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Preface 
 

Although Continuum Mechanics belongs to a traditional topic, the research in this 
field has never been stopped. The goal of this book is to introduce the latest progress 
in the fundamental aspects and the applications in various engineering areas. The first 
three chapters are on the fundamentals of Continuum Mechanics. Chapter 1 
introduces the Spencer Operator and presents the applications of this useful operator 
in solving Continuum Mechanics problems. The authors extend the ideas for tackling 
general Mathematical Physics problems. Chapter 2 is on Transversality Condition. The 
author clearly defines the transversality and provides a rigorous derivation for the 
problem. In Chapter 3, fluid is treated as the continuum media. Related mechanics 
analysis is given with the emphasis on non-Newtonian fluid. 

The rest five chapters are on the applications of continuum mechanics in emerging 
engineering fields. Chapter 4 uses Continuum Mechanics concepts to analyze the 
structure-performance relation of solid oxide fuel cells. Three-dimensional 
reconstructed microstructures are proposed based on both analytical solutions and 
simulations. In Chapter 5, the mechanical responses are examined in hydraulic piping 
systems. Noise and vibration related to such systems are presented. Chapter 6 deals 
with the mechanics associated with the precision machining process. Finite element 
method (FEM) was used to analyze the mechanistic aspect of materials removal at 
small scales. Chapter 7 applies Fracture Mechanics approach to predict the progressive 
stiffness loss of symmetric laminated plates. Specifically, transverse cracks are treated 
in the studies. Finally, Chapter 8 is on the surface damage analysis. The energy 
dissipation criteria based on Continuum Mechanics and Micromechanics are proposed 
to evaluate the surface contact damage evolution. Each chapter is self-contained. The 
book should be a good reference for researchers in Applied Mechanics. 

Ms. Maja Bozicevic, the Publishing Process Manager is acknowledged for her effort on 
collecting the chapters and assistance in editing. Without her help, the publication of 
this book would not be possible. 

 
Dr. Yong X. Gan 

University of Toledo, Member of American Society of Mechanical Engineers, 
Member of Sigma Xi Scientific Society, 
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1. Introduction

Let us revisit briefly the foundation of n-dimensional elasticity theory as it can be found today
in any textbook, restricting our study to n = 2 for simplicity. If x = (x1, x2) is a point in
the plane and ξ = (ξ1(x), ξ2(x)) is the displacement vector, lowering the indices by means
of the Euclidean metric, we may introduce the "small" deformation tensor ε = (εij = εji =

(1/2)(∂iξ j + ∂jξi)) with n(n + 1)/2 = 3 (independent) components (ε11, ε12 = ε21, ε22). If
we study a part of a deformed body, for example a thin elastic plane sheet, by means of a
variational principle, we may introduce the local density of free energy ϕ(ε) = ϕ(εij|i ≤
j) = ϕ(ε11, ε12, ε22) and vary the total free energy F =

∫
ϕ(ε)dx with dx = dx1 ∧ dx2 by

introducing σij = ∂ϕ/∂εij for i ≤ j in order to obtain δF =
∫
(σ11δε11 + σ12δε12 + σ22δε22)dx.

Accordingly, the "decision" to define the stress tensor σ by a symmetric matrix with σ12 =
σ21 is purely artificial within such a variational principle. Indeed, the usual Cauchy device
(1828) assumes that each element of a boundary surface is acted on by a surface density of
force �σ with a linear dependence �σ = (σir(x)nr) on the outward normal unit vector �n =
(nr) and does not make any assumption on the stress tensor. It is only by an equilibrium
of forces and couples, namely the well known phenomenological static torsor equilibrium, that
one can "prove" the symmetry of σ. However, even if we assume this symmetry, we now
need the different summation σijδεij = σ11δε11 + 2σ12δε12 + σ22δε22 = σir∂rδξi. An integration
by parts and a change of sign produce the volume integral

∫
(∂rσir)δξidx leading to the stress

equations ∂rσir = 0. The classical approach to elasticity theory, based on invariant theory with respect
to the group of rigid motions, cannot therefore describe equilibrium of torsors by means of a variational
principle where the proper torsor concept is totally lacking.

There is another equivalent procedure dealing with a variational calculus with constraint.
Indeed, as we shall see in Section 7, the deformation tensor is not any symmetric tensor as
it must satisfy n2(n2 − 1)/12 compatibility conditions (CC), that is only ∂22ε11 + ∂11ε22 −
2∂12ε12 = 0 when n = 2. In this case, introducing the Lagrange multiplier −φ for convenience,
we have to vary

∫
(ϕ(ε)−φ(∂22ε11 + ∂11ε22− 2∂12ε12))dx for an arbitrary ε. A double integration

by parts now provides the parametrization σ11 = ∂22φ, σ12 = σ21 = −∂12φ, σ22 = ∂11φ of
the stress equations by means of the Airy function φ and the formal adjoint of the CC, on the
condition to observe that we have in fact 2σ12 = −2∂12φ as another way to understand the deep
meaning of the factor "2" in the summation. In arbitrary dimension, it just remains to notice
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that the above compatibility conditions are nothing else but the linearized Riemann tensor in
Riemannan geometry, a crucial mathematical tool in the theory of general relativity.

It follows that the only possibility to revisit the foundations of engineering and mathematical
physics is to use new mathematical methods, namely the theory of systems of partial
differential equations and Lie pseudogroups developped by D.C. Spencer and coworkers
during the period 1960-1975. In particular, Spencer invented the first order operator now
wearing his name in order to bring in a canonical way the formal study of systems of ordinary
differential (OD) or partial differential (PD) equations to that of equivalent first order systems.
However, despite its importance, the Spencer operator is rarely used in mathematics today and,
up to our knowledge, has never been used in engineering or mathematical physics. The main
reason for such a situation is that the existing papers, largely based on hand-written lecture
notes given by Spencer to his students (the author was among them in 1969) are quite technical
and the problem also lies in the only "accessible" book "Lie equations" he published in 1972
with A. Kumpera. Indeed, the reader can easily check by himself that the core of this book has
nothing to do with its introduction recalling known differential geometric concepts on which
most of physics is based today.

The first and technical purpose of this chapter, an extended version of a lecture at the second
workshop on Differential Equations by Algebraic Methods (DEAM2, february 9-11, 2011, Linz,
Austria), is to recall briefly its definition, both in the framework of systems of linear ordinary
or partial differential equations and in the framework of differential modules. The local theory
of Lie pseudogroups and the corresponding non-linear framework are also presented for the
first time in a rather elementary manner though it is a difficult task.

The second and central purpose is to prove that the use of the Spencer operator constitutes
the common secret of the three following famous books published about at the same time in the
beginning of the last century, though they do not seem to have anything in common at first
sight as they are successively dealing with the foundations of elasticity theory, commutative
algebra, electromagnetism (EM) and general relativity (GR):

[C] E. and F. COSSERAT: "Théorie des Corps Déformables", Hermann, Paris, 1909.
[M] F.S. MACAULAY: "The Algebraic Theory of Modular Systems", Cambridge, 1916.
[W] H. WEYL: "Space, Time, Matter", Springer, Berlin, 1918 (1922, 1958; Dover, 1952).

Meanwhile we shall point out the striking importance of the second book for studying
identifiability in control theory. We shall also obtain from the previous results the
group theoretical unification of finite elements in engineering sciences (elasticity, heat,
electromagnetism), solving the torsor problem and recovering in a purely mathematical
way known field-matter coupling phenomena (piezzoelectricity, photoelasticity, streaming
birefringence, viscosity, ...).

As a byproduct and though disturbing it may be, the third and perhaps essential purpose
is to prove that these unavoidable new differential and homological methods contradict the
existing mathematical foundations of both engineering (continuum mechanics, electromagnetism) and
mathematical (gauge theory, general relativity) physics.

Many explicit examples will illustate this chapter which is deliberately written in a rather
self-contained way to be accessible to a large audience, which does not mean that it is
elementary in view of the number of new concepts that must be patched together. However,
the reader must never forget that each formula appearing in this new general framework has
been used explicitly or implicitly in [C], [M] and [W] for a mechanical, mathematical or
physical purpose.

2 Continuum Mechanics – Progress in Fundamentals and Engineering Applications
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2. From Lie groups to Lie pseudogroups

Evariste Galois (1811-1832) introduced the word "group" for the first time in 1830. Then the
group concept slowly passed from algebra (groups of permutations) to geometry (groups
of transformations). It is only in 1880 that Sophus Lie (1842-1899) studied the groups of
transformations depending on a finite number of parameters and now called Lie groups of
transformations. Let X be a manifold with local coordinates x = (x1, ..., xn) and G be a Lie
group, that is another manifold with local coordinates a = (a1, ..., ap) called parameters with a
composition G × G → G : (a, b) → ab, an inverse G → G : a → a−1 and an identity e ∈ G
satisfying:

(ab)c = a(bc) = abc, aa−1 = a−1a = e, ae = ea = a, ∀a, b, c ∈ G

Definition 2.1. G is said to act on X if there is a map X × G → X : (x, a) → y = ax = f (x, a)
such that (ab)x = a(bx) = abx, ∀a, b ∈ G, ∀x ∈ X and, for simplifying the notations, we shall use
global notations even if only local actions are existing. The set Gx = {a ∈ G | ax = x} is called the
isotropy subgroup of G at x ∈ X. The action is said to be effective if ax = x, ∀x ∈ X ⇒ a = e. A
subset S ⊂ X is said to be invariant under the action of G if aS ⊂ S, ∀a ∈ G and the orbit of x ∈ X is
the invariant subset Gx = {ax | a ∈ G} ⊂ X. If G acts on two manifolds X and Y, a map f : X → Y
is said to be equivariant if f (ax) = a f (x), ∀x ∈ X, ∀a ∈ G.

For reasons that will become clear later on, it is often convenient to introduce the graph X ×
G → X × X : (x, a) → (x, y = ax) of the action. In the product X × X, the first factor is called
the source while the second factor is called the target.

Definition 2.2. The action is said to be free if the graph is injective and transitive if the graph is
surjective. The action is said to be simply transitive if the graph is an isomorphism and X is said to be
a principal homogeneous space (PHS) for G.

In order to fix the notations, we quote without any proof the "Three Fundamental Theorems of
Lie" that will be of constant use in the sequel ([26]):

First fundamental theorem: The orbits x = f (x0, a) satisfy the system of PD equations
∂xi/∂aσ = θi

ρ(x)ωρ
σ(a) with det(ω) 	= 0. The vector fields θρ = θi

ρ(x)∂i are called infinitesimal
generators of the action and are linearly independent over the constants when the action is
effective.

If X is a manifold, we denote as usual by T = T(X) the tangent bundle of X, by T∗ = T∗(X)
the cotangent bundle, by ∧rT∗ the bundle of r-forms and by SqT∗ the bundle of q-symmetric tensors.
More generally, let E be a fibered manifold, that is a manifold with local coordinates (xi, yk) for
i = 1, ..., n and k = 1, ..., m simply denoted by (x, y), projection π : E → X : (x, y) → (x) and
changes of local coordinates x̄ = ϕ(x), ȳ = ψ(x, y). If E and F are two fibered manifolds over
X with respective local coordinates (x, y) and (x, z), we denote by E×XF the fibered product of
E and F over X as the new fibered manifold over X with local coordinates (x, y, z). We denote
by f : X → E : (x)→ (x, y = f (x)) a global section of E , that is a map such that π ◦ f = idX but
local sections over an open set U ⊂ X may also be considered when needed. Under a change
of coordinates, a section transforms like f̄ (ϕ(x)) = ψ(x, f (x)) and the derivatives transform
like:

∂ f̄ l

∂x̄r (ϕ(x))∂i ϕ
r(x) =

∂ψl

∂xi (x, f (x)) +
∂ψl

∂yk (x, f (x))∂i f k(x)

3Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics
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We may introduce new coordinates (xi, yk, yk
i ) transforming like:

ȳl
r∂i ϕ

r(x) =
∂ψl

∂xi (x, y) +
∂ψl

∂yk (x, y)yk
i

We shall denote by Jq(E) the q-jet bundle of E with local coordinates (xi, yk, yk
i , yk

ij, ...) =

(x, yq) called jet coordinates and sections fq : (x) → (x, f k(x), f k
i (x), f k

ij(x), ...) = (x, fq(x))

transforming like the sections jq( f ) : (x) → (x, f k(x), ∂i f k(x), ∂ij f k(x), ...) = (x, jq( f )(x))
where both fq and jq( f ) are over the section f of E . Of course Jq(E) is a fibered manifold over X
with projection πq while Jq+r(E) is a fibered manifold over Jq(E) with projection π

q+r
q , ∀r ≥ 0.

Definition 2.3. A system of order q on E is a fibered submanifold Rq ⊂ Jq(E) and a solution of Rq
is a section f of E such that jq( f ) is a section ofRq.

Definition 2.4. When the changes of coordinates have the linear form x̄ = ϕ(x), ȳ = A(x)y, we say
that E is a vector bundle over X and denote for simplicity a vector bundle and its set of sections by the
same capital letter E. When the changes of coordinates have the form x̄ = ϕ(x), ȳ = A(x)y + B(x)
we say that E is an affine bundle over X and we define the associated vector bundle E over X by the
local coordinates (x, v) changing like x̄ = ϕ(x), v̄ = A(x)v.

Definition 2.5. If the tangent bundle T(E) has local coordinates (x, y, u, v) changing like ūj =

∂i ϕ
j(x)ui, v̄l =

∂ψl

∂xi (x, y)ui +
∂ψl

∂yk (x, y)vk, we may introduce the vertical bundle V(E) ⊂ T(E)
as a vector bundle over E with local coordinates (x, y, v) obtained by setting u = 0 and changes

v̄l =
∂ψl

∂yk (x, y)vk. Of course, when E is an affine bundle with associated vector bundle E over X, we
have V(E) = E ×X E.

For a later use, if E is a fibered manifold over X and f is a section of E , we denote by f−1(V(E))
the reciprocal image of V(E) by f as the vector bundle over X obtained when replacing (x, y, v)
by (x, f (x), v) in each chart. It is important to notice in variational calculus that a variation δ f
of f is such that δ f (x), as a vertical vector field not necessary "small", is a section of this vector
bundle and that ( f , δ f ) is nothing else than a section of V(E) over X.

We now recall a few basic geometric concepts that will be constantly used. First of all, if
ξ, η ∈ T, we define their bracket [ξ, η] ∈ T by the local formula ([ξ, η])i(x) = ξr(x)∂rηi(x)−
ηs(x)∂sξ i(x) leading to the Jacobi identity [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0, ∀ξ, η, ζ ∈ T
allowing to define a Lie algebra and to the useful formula [T( f )(ξ), T( f )(η)] = T( f )([ξ, η])
where T( f ) : T(X)→ T(Y) is the tangent mapping of a map f : X → Y.

Second fundamental theorem: If θ1, ..., θp are the infinitesimal generators of the effective
action of a lie group G on X, then [θρ, θσ] = cτ

ρσθτ where the cτ
ρσ are the structure constants

of a Lie algebra of vector fields which can be identified with G = Te(G).

When I = {i1 < ... < ir} is a multi-index, we may set dxI = dxi1 ∧ ...∧ dxir for describing ∧rT∗
and introduce the exterior derivative d : ∧rT∗ → ∧r+1T∗ : ω = ωIdxI → dω = ∂iωIdxi ∧ dxI

with d2 = d ◦ d ≡ 0 in the Poincaré sequence:

∧0T∗ d−→ ∧1T∗ d−→ ∧2T∗ d−→ ... d−→ ∧nT∗ −→ 0

4 Continuum Mechanics – Progress in Fundamentals and Engineering Applications
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The Lie derivative of an r-form with respect to a vector field ξ ∈ T is the linear first order
operator L(ξ) linearly depending on j1(ξ) and uniquely defined by the following three
properties:

1. L(ξ) f = ξ. f = ξ i∂i f , ∀ f ∈ ∧0T∗ = C∞(X).
2. L(ξ)d = dL(ξ).
3. L(ξ)(α ∧ β) = (L(ξ)α) ∧ β + α ∧ (L(ξ)β), ∀α, β ∈ ∧T∗.

It can be proved thatL(ξ) = i(ξ)d+ di(ξ) where i(ξ) is the interior multiplication (i(ξ)ω)i1...ir =

ξ iωii1...ir and that [L(ξ),L(η)] = L(ξ) ◦ L(η)−L(η) ◦ L(ξ) = L([ξ, η]), ∀ξ, η ∈ T.

Using crossed-derivatives in the PD equations of the First Fundamental Theorem and
introducing the family of 1-forms ωτ = ωτ

σ(a)daσ both with the matrix α = ω−1 of right
invariant vector fields, we obtain the compatibility conditions (CC) expressed by the following
corollary where one must care about the sign used:

Corollary 2.1. One has the Maurer-Cartan (MC) equations dωτ + cτ
ρσωρ ∧ωσ = 0 or the equivalent

relations [αρ, ασ] = cτ
ρσατ .

Applying d to the MC equations and substituting, we obtain the integrability conditions (IC):

Third fundamental theorem For any Lie algebra G defined by structure constants satisfying :

cτ
ρσ + cτ

σρ = 0, cλ
μρcμ

στ + cλ
μσcμ

τρ + cλ
μτcμ

ρσ = 0

one can construct an analytic group G such that G = Te(G).

Example 2.1. Considering the affine group of transformations of the real line y = a1x + a2, we obtain
θ1 = x∂x, θ2 = ∂x ⇒ [θ1, θ2] = −θ2 and thus ω1 = (1/a1)da1, ω2 = da2− (a2/a1)da1 ⇒ dω1 =
0, dω2 −ω1 ∧ω2 = 0 ⇔ [α1, α2] = −α2 with α1 = a1∂1 + a2∂2, α2 = ∂2.

Only ten years later Lie discovered that the Lie groups of transformations are only particular
examples of a wider class of groups of transformations along the following definition where
aut(X) denotes the group of all local diffeomorphisms of X:

Definition 2.6. A Lie pseudogroup of transformations Γ ⊂ aut(X) is a group of transformations
solutions of a system of OD or PD equations such that, if y = f (x) and z = g(y) are two solutions,
called finite transformations, that can be composed, then z = g ◦ f (x) = h(x) and x = f−1(y) = g(y)
are also solutions while y = x is a solution.

The underlying system may be nonlinear and of high order as we shall see later on. We shall
speak of an algebraic pseudogroup when the system is defined by differential polynomials that
is polynomials in the derivatives. In the case of Lie groups of transformations the system
is obtained by differentiating the action law y = f (x, a) with respect to x as many times as
necessary in order to eliminate the parameters. Looking for transformations "close" to the
identity, that is setting y = x + tξ(x) + ... when t � 1 is a small constant parameter and
passing to the limit t → 0, we may linearize the above nonlinear system of finite Lie equations in
order to obtain a linear system of infinitesimal Lie equations of the same order for vector fields.
Such a system has the property that, if ξ, η are two solutions, then [ξ, η] is also a solution.
Accordingly, the set Θ ⊂ T of solutions of this new system satifies [Θ, Θ] ⊂ Θ and can
therefore be considered as the Lie algebra of Γ.

5Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics
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Though the collected works of Lie have been published by his student F. Engel at the end of
the 19th century, these ideas did not attract a large audience because the fashion in Europe
was analysis. Accordingly, at the beginning of the 20th century and for more than fifty years,
only two frenchmen tried to go further in the direction pioneered by Lie, namely Elie Cartan
(1869-1951) who is quite famous today and Ernest Vessiot (1865-1952) who is almost ignored
today, each one deliberately ignoring the other during his life for a precise reason that we now
explain with details as it will surprisingly constitute the heart of this chapter. (The author
is indebted to Prof. Maurice Janet (1888-1983), who was a personal friend of Vessiot, for the
many documents he gave him, partly published in [25]). Roughly, the idea of many people at
that time was to extend the work of Galois along the following scheme of increasing difficulty:

1) Galois theory ([34]): Algebraic equations and permutation groups.
2) Picard-Vessiot theory ([17]): OD equations and Lie groups.
3) Differential Galois theory ([24],[37]): PD equations and Lie pseudogroups.

In 1898 Jules Drach (1871-1941) got and published a thesis ([9]) with a jury made by Gaston
Darboux, Emile Picard and Henri Poincaré, the best leading mathematicians of that time.
However, despite the fact that it contains ideas quite in advance on his time such as the
concept of a "differential field" only introduced by J.-F. Ritt in 1930 ([31]), the jury did not
notice that the main central result was wrong: Cartan found the counterexamples, Vessiot
recognized the mistake, Paul Painlevé told it to Picard who agreed but Drach never wanted
to acknowledge this fact and was supported by the influent Emile Borel. As a byproduct,
everybody flew out of this "affair", never touching again the Galois theory. After publishing a
prize-winning paper in 1904 where he discovered for the first time that the differential Galois
theory must be a theory of (irreducible) PHS for algebraic pseudogroups, Vessiot remained
alone, trying during thirty years to correct the mistake of Drach that we finally corrected in
1983 ([24]).

3. Cartan versus Vessiot : The structure equations

We study first the work of Cartan which can be divided into two parts. The first part, for which
he invented exterior calculus, may be considered as a tentative to extend the MC equations
from Lie groups to Lie pseudogroups. The idea for that is to consider the system of order q and
its prolongations obtained by differentiating the equations as a way to know certain derivatives
called principal from all the other arbitrary ones called parametric in the sense of Janet ([13]).
Replacing the derivatives by jet coordinates, we may try to copy the procedure leading to
the MC equations by using a kind of "composition" and "inverse" on the jet coordinates. For
example, coming back to the last definition, we get successively:

∂h
∂x

=
∂g
∂y

∂ f
∂x

,
∂2h
∂x2 =

∂2g
∂y2

∂ f
∂x

∂ f
∂x

+
∂g
∂y

∂2 f
∂x2 , ...

Now if g = f−1 then g ◦ f = id and thus ∂g
∂y

∂ f
∂x = 1, ... while the new identity idq = jq(id)

is made by the successive derivatives of y = x, namely (1, 0, 0, ...). These awfully complicated
computations bring a lot of structure constants and have been so much superseded by the work
of Donald C. Spencer (1912-2001) ([11],[12],[18],[33]) that, in our opinion based on thirty years
of explicit computations, this tentative has only been used for classification problems and is
not useful for applications compared to the results of the next sections. In a single concluding
sentence, Cartan has not been able to "go down" to the base manifold X while Spencer did succeed
fifty years later.

6 Continuum Mechanics – Progress in Fundamentals and Engineering Applications
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We shall now describe the second part with more details as it has been (and still is !) the crucial
tool used in both engineering (analytical and continuum mechanics) and mathematical (gauge
theory and general relativity) physics in an absolutely contradictory manner. We shall try to
use the least amount of mathematics in order to prepare the reader for the results presented
in the next sections. For this let us start with an elementary experiment that will link at once
continuum mechanics and gauge theory in an unusual way. Let us put a thin elastic rectilinear
rubber band along the x axis on a flat table and translate it along itself. The band will remain
identical as no deformation can be produced by this constant translation. However, if we
move each point continuously along the same direction but in a point depending way, for
example fixing one end and pulling on the other end, there will be of course a deformation of
the elastic band according to the Hooke law. It remains to notice that a constant translation can
be written in the form y = x + a2 as in Example 2.1 while a point depending translation can be
written in the form y = x + a2(x) which is written in any textbook of continuum mechanics in
the form y = x + ξ(x) by introducing the displacement vector ξ. However nobody could even
imagine to make a1 also point depending and to consider y = a1(x)x + a2(x) as we shall do
in Example 7.2.We also notice that the movement of a rigid body in space may be written in
the form y = a(t)x + b(t) where now a(t) is a time depending orthogonal matrix and b(t) is
a time depending vector. What makes all the difference between the two examples is that the
group is acting on x in the first but not acting on t in the second. Finally, a point depending
rotation or dilatation is not accessible to intuition and the general theory must be done in the
following manner.

If X is a manifold and G is a lie group not acting necessarily on X, let us consider maps a :
X → G : (x) → (a(x)) or equivalently sections of the trivial (principal) bundle X × G over
X. If x + dx is a point of X close to x, then T(a) will provide a point a + da = a + ∂a

∂x dx
close to a on G. We may bring a back to e on G by acting on a with a−1, either on the left or
on the right, getting therefore a 1-form a−1da = A or daa−1 = B. As aa−1 = e we also get
daa−1 = −ada−1 = −b−1db if we set b = a−1 as a way to link A with B. When there is an
action y = ax, we have x = a−1y = by and thus dy = dax = daa−1y, a result leading through
the First Fundamental Theorem of Lie to the equivalent formulas:

a−1da = A = (Aτ
i (x)dxi = −ωτ

σ(b(x))∂ibσ(x)dxi)

daa−1 = B = (Bτ
i (x)dxi = ωτ

σ(a(x))∂iaσ(x)dxi)

Introducing the induced bracket [A, A](ξ, η) = [A(ξ), A(η)] ∈ G, ∀ξ, η ∈ T, we may define
the 2-form dA− [A, A] = F ∈ ∧2T∗ ⊗ G by the local formula (care to the sign):

∂i Aτ
j (x)− ∂j Aτ

i (x)− cτ
ρσ Aρ

i (x)Aσ
j (x) = Fτ

ij (x)

and obtain from the second fundamental theorem:

Theorem 3.1. There is a nonlinear gauge sequence:

X× G −→ T∗ ⊗ G MC−→ ∧2T∗ ⊗ G
a −→ a−1da = A −→ dA− [A, A] = F

Choosing a "close" to e, that is a(x) = e + tλ(x) + ... and linearizing as usual, we obtain the
linear operator d : ∧0T∗ ⊗ G → ∧1T∗ ⊗ G : (λτ(x))→ (∂iλ

τ(x)) leading to:

7Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics
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Corollary 3.1. There is a linear gauge sequence:

∧0T∗ ⊗ G d−→ ∧1T∗ ⊗ G d−→ ∧2T∗ ⊗ G d−→ ... d−→ ∧nT∗ ⊗ G −→ 0

which is the tensor product by G of the Poincaré sequence:

Remark 3.1. When the physicists C.N. Yang and R.L. Mills created (non-abelian) gauge theory in
1954 ([38],[39]), their work was based on these results which were the only ones known at that time,
the best mathematical reference being the well known book by S. Kobayashi and K. Nomizu ([15]). It
follows that the only possibility to describe elecromagnetism (EM) within this framework was to call
A the Yang-Mills potential and F the Yang-Mills field (a reason for choosing such notations) on the
condition to have dim(G) = 1 in the abelian situation c = 0 and to use a Lagrangian depending on F =
dA− [A, A] in the general case. Accordingly the idea was to select the unitary group U(1), namely
the unit circle in the complex plane with Lie algebra the tangent line to this circle at the unity (1, 0). It
is however important to notice that the resulting Maxwell equations dF = 0 have no equivalent in the
non-abelian case c 	= 0.

Just before Albert Einstein visited Paris in 1922, Cartan published many short Notes ([5])
announcing long papers ([6]) where he selected G to be the Lie group involved in the Poincaré
(conformal) group of space-time preserving (up to a function factor) the Minkowski metric
ω = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2 with x4 = ct where c is the speed of light. In the
first case F is decomposed into two parts, the torsion as a 2-form with value in translations on
one side and the curvature as a 2-form with value in rotations on the other side. This result
was looking coherent at first sight with the Hilbert variational scheme of general relativity
(GR) introduced by Einstein in 1915 ([21],[38]) and leading to a Lagrangian depending on
F = dA− [A, A] as in the last remark.

In the meantime, Poincaré developped an invariant variational calculus ([22]) which has been
used again without any quotation, successively by G. Birkhoff and V. Arnold (compare [4],
205-216 with [2], 326, Th 2.1). A particular case is well known by any student in the analytical
mechanics of rigid bodies. Indeed, using standard notations, the movement of a rigid body is
described in a fixed Cartesian frame by the formula x(t) = a(t)x0 + b(t) where a(t) is a 3× 3
time dependent orthogonal matrix (rotation) and b(t) a time depending vector (translation)
as we already said. Differentiating with respect to time by using a dot, the absolute speed is
v = ẋ(t) = ȧ(t)x0 + ḃ(t) and we obtain the relative speed a−1(t)v = a−1(t)ȧ(t)x0 + a−1(t)ḃ(t)
by projection in a frame fixed in the body. Having in mind Example 2.1, it must be noticed
that the so-called Eulerian speed v = v(x, t) = ȧa−1x + ḃ− ȧa−1b only depends on the 1-form
B = (ȧa−1, ḃ− ȧa−1b). The Lagrangian (kinetic energy in this case) is thus a quadratic function
of the 1-form A = (a−1 ȧ, a−1ḃ) where a−1 ȧ is a 3× 3 skew symmetric time depending matrix.
Hence, "surprisingly", this result is not coherent at all with EM where the Lagrangian is the
quadratic expression (ε/2)E2 − (1/2μ)B2 because the electric field �E and the magnetic field �B
are combined in the EM field F as a 2-form satisfying the first set of Maxwell equations dF = 0.
The dielectric constant ε and the magnetic constant μ are leading to the electric induction �D =

ε�E and the magnetic induction �H = (1/μ)�B in the second set of Maxwell equations. In view of
the existence of well known field-matter couplings such as piezoelectricity and photoelasticity
that will be described later on, such a situation is contradictory as it should lead to put on
equal footing 1-forms and 2-forms contrary to any unifying mathematical scheme but no other
substitute could have been provided at that time.

8 Continuum Mechanics – Progress in Fundamentals and Engineering Applications
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Let us now turn to the other way proposed by Vessiot in 1903 ([36]) and 1904 ([37]). Our
purpose is only to sketch the main results that we have obtained in many books ([23-26], we
do not know other references) and to illustrate them by a series of specific examples, asking
the reader to imagine any link with what has been said.

1. If E = X × X, we shall denote by Πq = Πq(X, X) the open subfibered manifold of
Jq(X × X) defined independently of the coordinate system by det(yk

i ) 	= 0 with source
projection αq : Πq → X : (x, yq) → (x) and target projection βq : Πq → X : (x, yq) → (y).
We shall sometimes introduce a copy Y of X with local coordinates (y) in order to avoid
any confusion between the source and the target manifolds. Let us start with a Lie
pseudogroup Γ ⊂ aut(X) defined by a system Rq ⊂ Πq of order q. In all the sequel
we shall suppose that the system is involutive (see next section) and that Γ is transitive that
is ∀x, y ∈ X, ∃ f ∈ Γ, y = f (x) or, equivalently, the map (αq, βq) : Rq → X × X : (x, yq) →
(x, y) is surjective.

2. The Lie algebra Θ ⊂ T of infinitesimal transformations is then obtained by linearization,
setting y = x + tξ(x) + ... and passing to the limit t → 0 in order to obtain the linear
involutive system Rq = id−1

q (V(Rq)) ⊂ Jq(T) by reciprocal image with Θ = {ξ ∈
T|jq(ξ) ∈ Rq}.

3. Passing from source to target, we may prolong the vertical infinitesimal transformations
η = ηk(y) ∂

∂yk to the jet coordinates up to order q in order to obtain:

ηk(y)
∂

∂yk +
∂ηk

∂yr yr
i

∂

∂yk
i
+ (

∂2ηk

∂yr∂ys yr
i ys

j +
∂ηk

∂yr yr
ij)

∂

∂yk
ij
+ ...

where we have replaced jq( f )(x) by yq, each component beeing the "formal" derivative of
the previous one .

4. As [Θ, Θ] ⊂ Θ, we may use the Frobenius theorem in order to find a generating
fundamental set of differential invariants {Φτ(yq)} up to order q which are such that
Φτ(ȳq) = Φτ(yq) by using the chain rule for derivatives whenever ȳ = g(y) ∈ Γ acting
now on Y. Of course, in actual practice one must use sections of Rq instead of solutions but it
is only in section 6 that we shall see why the use of the Spencer operator will be crucial for
this purpose. Specializing the Φτ at idq(x) we obtain the Lie form Φτ(yq) = ωτ(x) ofRq.

5. The main discovery of Vessiot, fifty years in advance, has been to notice that the
prolongation at order q of any horizontal vector field ξ = ξ i(x) ∂

∂xi commutes with the
prolongation at order q of any vertical vector field η = ηk(y) ∂

∂yk , exchanging therefore
the differential invariants. Keeping in mind the well known property of the Jacobian
determinant while passing to the finite point of view, any (local) transformation y = f (x)
can be lifted to a (local) transformation of the differential invariants between themselves of
the form u → λ(u, jq( f )(x)) allowing to introduce a natural bundle F over X by patching
changes of coordinates x̄ = ϕ(x), ū = λ(u, jq(ϕ)(x)). A section ω of F is called a geometric
object or structure on X and transforms like ω̄( f (x)) = λ(ω(x), jq( f )(x)) or simply
ω̄ = jq( f )(ω). This is a way to generalize vectors and tensors (q = 1) or even connections
(q = 2). As a byproduct we have Γ = { f ∈ aut(X)|Φω(jq( f )) = jq( f )−1(ω) = ω} as
a new way to write out the Lie form and we may say that Γ preserves ω. We also obtain
Rq = { fq ∈ Πq| f−1

q (ω) = ω}. Coming back to the infinitesimal point of view and setting
ft = exp(tξ) ∈ aut(X), ∀ξ ∈ T, we may define the ordinary Lie derivative with value in
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ω−1(V(F )) by the formula :

Dξ = Dωξ = L(ξ)ω =
d
dt

jq( ft)
−1(ω)|t=0 ⇒ Θ = {ξ ∈ T|L(ξ)ω = 0}

while we have x → x + tξ(x) + ... ⇒ uτ → uτ + t∂μξk Lτμ
k (u) + ... where μ = (μ1, ..., μn)

is a multi-index as a way to write down the system of infinitesimal Lie equations in the
Medolaghi form:

Ωτ ≡ (L(ξ)ω)τ ≡ −Lτμ
k (ω(x))∂μξk + ξr∂rωτ(x) = 0

6. By analogy with "special" and "general" relativity, we shall call the given section special and
any other arbitrary section general. The problem is now to study the formal properties of
the linear system just obtained with coefficients only depending on j1(ω), exactly like L.P.
Eisenhart did for F = S2T∗ when finding the constant Riemann curvature condition for a
metric ω with det(ω) 	= 0 ([26], Example 10, p 249). Indeed, if any expression involving ω
and its derivatives is a scalar object, it must reduce to a constant because Γ is assumed to
be transitive and thus cannot be defined by any zero order equation. Now one can prove
that the CC for ω̄, thus for ω too, only depend on the Φ and take the quasi-linear symbolic
form v ≡ I(u1) ≡ A(u)ux + B(u) = 0, allowing to define an affine subfibered manifold
B1 ⊂ J1(F ) over F . Now, if one has two sections ω and ω̄ of F , the equivalence problem is
to look for f ∈ aut(X) such that jq( f )−1(ω) = ω̄. When the two sections satisfy the same
CC, the problem is sometimes locally possible (Lie groups of transformations, Darboux
problem in analytical mechanics,...) but sometimes not ([23], p 333).

7. Instead of the CC for the equivalence problem, let us look for the integrability conditions (IC)
for the system of infinitesimal Lie equations and suppose that, for the given section, all the
equations of order q + r are obtained by differentiating r times only the equations of order
q, then it was claimed by Vessiot ([36] with no proof, see [26], p 209) that such a property
is held if and only if there is an equivariant section c : F → F1 : (x, u) → (x, u, v =
c(u)) where F1 = J1(F )/B1 is a natural vector bundle over F with local coordinates
(x, u, v). Moreover, any such equivariant section depends on a finite number of constants
c called structure constants and the IC for the Vessiot structure equations I(u1) = c(u) are of
a polynomial form J(c) = 0.

8. Finally, when Y is no longer a copy of X, a system Aq ⊂ Jq(X × Y) is said to be an
automorphic system for a Lie pseudogroup Γ ⊂ aut(Y) if, whenever y = f (x) and ȳ = f̄ (x)
are two solutions, then there exists one and only one transformation ȳ = g(y) ∈ Γ such
that f̄ = g ◦ f . Explicit tests for checking such a property formally have been given in [24]
and can be implemented on computer in the differential algebraic framework.

Example 3.1. (Principal homogeneous structure) When Γ is made by the translations yi = xi + ai,
the Lie form is Φk

i (y1) ≡ yk
i = δk

i (Kronecker symbol) and the linearization is ∂iξ
k = 0. The natural

bundle is F = T∗×X ...×XT∗ (n times) with det(ω) 	= 0 and the general Medolaghi form is ωτ
r ∂iξ

r +

ξr∂rωτ
i = 0 ⇔ [ξ, ατ ] = 0 with τ = 1, ..., n if α = (αi

τ) = ω−1. Using crossed derivatives, one
finally gets the zero order equations:

ξr∂r(α
i
ρ(x)αj

σ(x)(∂iω
τ
j (x)− ∂jω

τ
i (x))) = 0

leading therefore (up to sign) to the n2(n− 1)/2 Vessiot structure equations:

∂iω
τ
j (x)− ∂jω

τ
i (x) = cτ

ρσω
ρ
i (x)ωσ

j (x)
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This result proves that the MC equations are only examples of the Vessiot structure equations.
We finally explain the name given to this structure ([26], p 296). Indeed, when X is a PHS for
a lie group G, the graph of the action is an isomorphism and we obtain a map X × X → G :
(x, y) → (a(x, y)) leading to a first order system of finite Lie equations yx =

∂ f
∂x (x, a(x, y)).

In order to produce a Lie form, let us first notice that the general solution of the system of
infinitesimal equations is ξ = λτθτ with λ = cst. Introducing the inverse matrix (ω) = (ωτ

i )
of the reciprocal distribution α = {ατ} made by n vectors commuting with {θτ}, we obtain
λ = cst ⇔ [ξ, α] = 0 ⇔ L(ξ)ω = 0.

Example 3.2. (Affine and projective structures of the real line) In Example 2.1 with n = 1, the special
Lie equations are Φ(y2) ≡ yxx/yx = 0 ⇒ ∂xxξ = 0 with q = 2 and we let the reader check as an
exercise that the general Lie equations are:

yxx

yx
+ ω(y)yx = ω(x)⇒ ∂xxξ + ω(x)∂xξ + ξ∂xω(x) = 0

with no IC. The special section is ω(x) = 0.
We could study in the same way the group of projective transformations of the real line
y = (ax + b)/(cx + d) and get with more work the general lie equations:

yxxx

yx
− 3

2
(

yxx

yx
)2 + ω(y)y2

x = ω(x)⇒ ∂xxxξ + 2ω(x)∂xξ + ξ∂xω(x) = 0

There is an isomorphism J1(Fa f f ) � Fa f f×XFproj : j1(ω)→ (ω, γ = ∂xω− (1/2)ω2).

Example 3.3. n = 2, q = 1, Γ = {y1 = f (x1), y2 = x2/(∂ f (x1)/∂x1)} where f is an arbitrary
invertible map. The involutive Lie form is:

Φ1(y1) ≡ y2y1
1 = x2,

Φ2(y1) ≡ y2y1
2 = 0,

Φ3(y1) ≡ ∂(y1, y2)

∂(x1, x2)
≡ y1

1y2
2 − y1

2y2
1 = 1

We obtain F = T∗×X∧2T∗ and ω = (α, β) where α is a 1-form and β is a 2-form with special section
ω = (x2dx1, dx1 ∧ dx2). It follows that dα/β is a well defined scalar because β 	= 0. The Vessiot
structure equation is dα = cβ with a single structure constant c which cannot have anything to do
with a Lie algebra. Considering the other section ω̄ = (dx1, dx1 ∧ dx2), we get c̄ = 0. As c = −1 and
thus c̄ 	= c, the equivalence problem j1( f )−1(ω) = ω̄ cannot even be solved formally.

Example 3.4. (Symplectic structure) With n = 2p, q = 1 and F = ∧2T∗, let ω be a closed 2-form
of maximum rank, that is dω = 0, det(ω) 	= 0. The equivalence problem is nothing else than the
Darboux problem in analytical mechanics giving the possibility to write locally ω = ∑ dp ∧ dq by
using canonical conjugate coordinates (q, p) = (position, momentum).

Example 3.5. (Contact structure) With n = 3, q = 1, w = dx1 − x3dx2 ⇒ w ∧ dw = dx1 ∧ dx2 ∧
dx3, let us consider Γ = { f ∈ aut(X)|j1( f )−1(w) = ρw}. This is not a Lie form but we get:

j1( f )−1(dw) = dj1( f )−1(w) = ρdw + dρ ∧ w ⇒ j1( f )−1(w ∧ dw) = ρ2(w ∧ dw)

11Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics
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The corresponding geometric object is thus made by a 1-form density ω = (ω1, ω2, ω3) that transforms
like a 1-form up to the division by the square root of the Jacobian determinant. The unusual general
Medolaghi form is:

Ωi ≡ ωr(x)∂iξ
r − (1/2)ωi(x)∂rξr + ξr∂rωi(x) = 0

In a symbolic way ω ∧ dω is now a scalar and the only Vessiot structure equation is:

ω1(∂2ω3 − ∂3ω2) + ω2(∂3ω1 − ∂1ω3) + ω3(∂1ω2 − ∂2ω1) = c

For the special section ω = (1,−x3, 0) we have c = 1. If we choose ω̄ = (1, 0, 0) we may define
Γ̄ by the system y1

2 = 0, y1
3 = 0, y2

2y3
3 − y2

3y3
2 = y1

1 but now c̄ = 0 and the equivalence problem
j1( f )−1(ω) = ω̄ cannot even be solved formally. These results can be extended to an arbitrary odd
dimension with much more work ([24], p 684).

Example 3.6. (Screw and complex structures) (n = 2, q = 1) In 1878 Clifford introduced abstract
numbers of the form x1 + εx2 with ε2 = 0 in order to study helicoidal movements in the mechanics
of rigid bodies. We may try to define functions of these numbers for which a derivative may have a
meaning. Thus, if f (x1 + εx2) = f 1(x1, x2) + ε f 2(x1, x2), then we should get:

d f = (A + εB)(dx1 + εdx2) = Adx1 + ε(Bdx1 + Adx2) = d f 1 + εd f 2

Accordingly, we have to look for transformations y1 = f 1(x1, x2), y2 = f 2(x1, x2) satisfying the
first order involutive system of finite Lie equations y1

2 = 0, y2
2 − y1

1 = 0 with no CC. As we have
an algebraic Lie pseudogroup, a tricky computation ([24], p 467) allows to prove that Γ is made by the
transformations preserving a mixed tensor with square equal to zero as follows:

(
y1

1 y1
2

y2
1 y2

2

)−1 ( 0 0
1 0

)(
y1

1 y1
2

y2
1 y2

2

)
=

(
0 0
1 0

)

We get the Lie form Φ1 ≡ y1
2/y1

1 = 0, Φ2 ≡ (y1
1)

2/(y1
1y2

2 − y1
2y2

1) = 1 and let the reader exhibit F .
Finally, introducing similarly the abstract number i such that i2 = −1, we get the Cauchy-Riemann
system y2

2 − y1
1 = 0, y1

2 + y2
1 = 0 with no CC defining complex analytic transformations and the

correponding geometric object or complex structure is a mixed tensor with square equal to minus the
2× 2 identity matrix as we have now:

(
y1

1 y1
2

y2
1 y2

2

)−1 ( 0 −1
1 0

)(
y1

1 y1
2

y2
1 y2

2

)
=

(
0 −1
1 0

)

Example 3.7. (Riemann structure) If ω is a section of F = S2T∗ with det(ω) 	= 0 we get:
Lie form Φij(y1) ≡ ωkl(y)yk

i yl
j = ωij(x)

Medolaghi form Ωij ≡ (L(ξ)ω)ij ≡ ωrj(x)∂iξ
r + ωir(x)∂jξ

r + ξr∂rωij(x) = 0
also called Killing system for historical reasons. A special section could be the Euclidean metric when
n = 1, 2, 3 as in elasticity theory or the Minkowski metric when n = 4 as in special relativity. The main
problem is that this system is not involutive unless we prolong the system to order two by differentiating
once the equations. For such a purpose, introducing ω−1 = (ωij) as usual, we may define:
Christoffel symbols γk

ij(x) = 1
2 ωkr(x)(∂iωrj(x) + ∂jωri(x)− ∂rωij(x)) = γk

ji(x)
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This is a new geometric object of order 2 allowing to obtain, as in Example 3.2, an isomorphism
j1(ω) � (ω, γ) and the second order equations with f−1

1 = g1:
Lie form gk

l (y
l
ij + γl

rs(y)yr
i ys

j ) = γk
ij(x)

Medolaghi form Γk
ij ≡ (L(ξ)γ)k

ij ≡ ∂ijξ
k + γk

rj(x)∂iξ
r + γk

ir(x)∂jξ
r − γr

ij(x)∂rξk + ξr∂rγk
ij(x) =

0
where (Γk

ij) is a section of S2T∗ ⊗ T. Surprisingly, the following expression:

Riemann tensor ρk
lij(x) ≡ ∂iγ

k
lj(x)− ∂jγ

k
li(x) + γr

lj(x)γk
ri(x)− γr

li(x)γk
rj(x)

is still a first order geometric object and even a tensor as a section of ∧2T∗ ⊗ T∗ ⊗ T satisfying the
purely algebraic relations :

ρk
lij + ρk

ijl + ρk
jli = 0, ωrlρ

l
kij + ωkrρr

lij = 0 ⇒ ρklij = ωkrρr
lij = ρijkl .

Accordingly, the IC must express that the new first order equations (L(ξ)ρ)k
lij = 0 are only linear

combinations of the previous ones and we get the Vessiot structure equations:
ρk

lij(x) = c(δk
i ωl j(x)− δk

j ωli(x))
describing the constant Riemannian curvature condition of Eisenhart [10]. Finally, as we have
ρr

rij(x) = ∂iγ
r
rj(x)− ∂jγ

r
ri(x) = 0, we can only introduce the Ricci tensor ρij(x) = ρr

irj(x) = ρji(x)

by contracting indices and the scalar curvature ρ(x) = ωij(x)ρij(x) in order to obtain ρ(x) =
n(n − 1)c. It remains to obtain all these results in a purely formal way, for example to prove that
the number of components of the Riemann tensor is equal to n2(n2 − 1)/12 without dealing with
indices.

Remark 3.2. Comparing the various Vessiot structure equations containing structure constants, we
discover at once that the many c appearing in the MC equations are absolutely on equal footing with
the only c appearing in the other examples. As their factors are either constant, linear or quadratic,
any identification of the quadratic terms appearing in the Riemann tensor with the quadratic terms
appearing in the MC equations is definitively not correct or, in an equivalent but more abrupt way, the
Cartan structure equations have nothing to do with the Vessiot structure equations. As we shall see,
most of mathematical physics today is based on such a confusion.

Remark 3.3. Let us consider again Example 3.2 with ∂xx f (x)/∂x f (x) = ω̄(x) and introduce a
variation η( f (x)) = δ f (x) as in analytical or continuum mechanics. We get similarly δ∂x f =

∂xδ f =
∂η
∂y ∂x f and so on, a result leading to δω̄(x) = ∂x fL(η)ω( f (x)) where the Lie derivative

involved is computed over the target. Let us now pass from the target to the source by introducing
η = ξ∂x f ⇒ ∂η

∂y ∂x f = ∂xξ∂x f + ξ∂xx f and so on, a result leading to the particularly
simple variation δω̄ = L(ξ)ω̄ over the soure. As another example of this general variational
procedure, let us compare with the similar variations on which classical finite elasticity theory is based.
Starting now with ωkl( f (x))∂i f k(x)∂j f l(x) = ω̄ij(x), where ω is the Euclidean metric, we obtain
(δω̄)ij(x) = ∂i f k(x)∂j f l(x)(L(η)ω)kl( f (x)) where the Lie derivative involved is computed over the
target. Passing now from the target to the source as before, we find the particularly simple variation
δω̄ = L(ξ)ω̄ over the source. For "small" deformations, source and target are of course identified but
it is not true that the infinitesimal deformation tensor is in general the limit of the finite deformation
tensor (for a counterexample, see [25], p 70).
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Introducing a copy Y of X in the general framework, ( f , δ f ) must be considered as a section
of V(X×Y) = (X×Y)×YT(Y) = X× T(Y) over X. When f is invertible (care), then we may
consider the map f : X → Y : (x) → (y = f (x)) and define ξ ∈ T by η = T( f )(ξ) or rather
η = j1( f )(ξ) in the language of geometric object, as a way to identify f−1(V(X × Y)) with
T = T(X). When f = id, this identification is canonical by considering vertical vectors along
the diagonal Δ = {(x, y) ∈ X × Y|y = x} and we get δω = Ω ∈ F0 = ω−1(V(F )). We point
out that the above vertical procedure is a nice tool for studying nonlinear systems ([26], III, C
and [27], III, 2).

4. Janet versus Spencer : The linear sequences

Let μ = (μ1, ..., μn) be a multi-index with length |μ| = μ1 + ... + μn, class i if μ1 = ... = μi−1 =
0, μi 	= 0 and μ + 1i = (μ1, ..., μi−1, μi + 1, μi+1, ..., μn). We set yq = {yk

μ|1 ≤ k ≤ m, 0 ≤ |μ| ≤
q} with yk

μ = yk when |μ| = 0. If E is a vector bundle over X with local coordinates (xi, yk)
for i = 1, ..., n and k = 1, ..., m, we denote by Jq(E) the q-jet bundle of E with local coordinates
simply denoted by (x, yq) and sections fq : (x) → (x, f k(x), f k

i (x), f k
ij(x), ...) transforming like

the section jq( f ) : (x) → (x, f k(x), ∂i f k(x), ∂ij f k(x), ...) when f is an arbitrary section of E.
Then both fq ∈ Jq(E) and jq( f ) ∈ Jq(E) are over f ∈ E and the Spencer operator just allows
to distinguish them by introducing a kind of "difference" through the operator D : Jq+1(E) →
T∗ ⊗ Jq(E) : fq+1 → j1( fq)− fq+1 with local components (∂i f k(x)− f k

i (x), ∂i f k
j (x)− f k

ij(x), ...)

and more generally (D fq+1)
k
μ,i(x) = ∂i f k

μ(x) − f k
μ+1i

(x). In a symbolic way, when changes of
coordinates are not involved, it is sometimes useful to write down the components of D in the
form di = ∂i − δi and the restriction of D to the kernel Sq+1T∗ ⊗ E of the canonical projection

π
q+1
q : Jq+1(E) → Jq(E) is minus the Spencer map δ = dxi ∧ δi : Sq+1T∗ ⊗ E → T∗ ⊗ SqT∗ ⊗ E.

The kernel of D is made by sections such that fq+1 = j1( fq) = j2( fq−1) = ... = jq+1( f ).
Finally, if Rq ⊂ Jq(E) is a system of order q on E locally defined by linear equations
Φτ(x, yq) ≡ aτμ

k (x)yk
μ = 0 and local coordinates (x, z) for the parametric jets up to order

q, the r-prolongation Rq+r = ρr(Rq) = Jr(Rq) ∩ Jq+r(E) ⊂ Jr(Jq(E)) is locally defined when
r = 1 by the linear equations Φτ(x, yq) = 0, diΦτ(x, yq+1) ≡ aτμ

k (x)yk
μ+1i

+ ∂ia
τμ
k (x)yk

μ = 0
and has symbol gq+r = Rq+r ∩ Sq+rT∗ ⊗ E ⊂ Jq+r(E) if one looks at the top order terms. If
fq+1 ∈ Rq+1 is over fq ∈ Rq, differentiating the identity aτμ

k (x) f k
μ(x) ≡ 0 with respect to

xi and substracting the identity aτμ
k (x) f k

μ+1i
(x) + ∂ia

τμ
k (x) f k

μ(x) ≡ 0, we obtain the identity

aτμ
k (x)(∂i f k

μ(x)− f k
μ+1i

(x)) ≡ 0 and thus the restriction D : Rq+1 → T∗ ⊗ Rq ([23],[27],[33]).

Definition 4.1. Rq is said to be formally integrable when the restriction π
q+1
q : Rq+1 → Rq is

an epimorphism ∀r ≥ 0 or, equivalently, when all the equations of order q + r are obtained by r
prolongations only ∀r ≥ 0. In that case, Rq+1 ⊂ J1(Rq) is a canonical equivalent formally integrable
first order system on Rq with no zero order equations, called the Spencer form.

Definition 4.2. Rq is said to be involutive when it is formally integrable and all the sequences ... δ→
∧sT∗ ⊗ gq+r

δ→ ... are exact ∀0 ≤ s ≤ n, ∀r ≥ 0. Equivalently, using a linear change of local
coordinates if necessary, we may successively solve the maximum number βn

q , βn−1
q , ..., β1

q of equations
with respect to the principal jet coordinates of strict order q and class n, n− 1, ..., 1 in order to introduce
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the characters αi
q = m (q+n−i−1)!

(q−1)!((n−i)! − βi
q for i = 1, ..., n with αn

q = α. Then Rq is involutive if Rq+1

is obtained by only prolonging the βi
q equations of class i with respect to d1, ..., di for i = 1, ..., n. In

that case dim(gq+1) = α1
q + ... + αn

q and one can exhibit the Hilbert polynomial dim(Rq+r) in r with
leading term (α/n!)rn when α 	= 0. Such a prolongation procedure allows to compute in a unique
way the principal (pri) jets from the parametric (par) other ones. This definition may also be applied to
nonlinear systems as well.

We obtain the following theorem generalizing for PD control systems the well known first
order Kalman form of OD control systems where the derivatives of the input do not appear
([27], VI,1.14, p 802):

Theorem 4.1. When Rq is involutive, its Spencer form is involutive and can be modified to a reduced
Spencer form in such a way that β = dim(Rq) − α equations can be solved with respect to the jet

coordinates z1
n, ..., zβ

n while zβ+1
n , ..., zβ+α

n do not appear. In this case zβ+1, ..., zβ+α do not appear in
the other equations.

When Rq is involutive, the linear differential operator D : E
jq→ Jq(E) Φ→ Jq(E)/Rq = F0 of

order q with space of solutions Θ ⊂ E is said to be involutive and one has the canonical linear
Janet sequence ([4], p 144):

0 −→ Θ −→ T D−→ F0
D1−→ F1

D2−→ ...
Dn−→ Fn −→ 0

where each other operator is first order involutive and generates the compatibility conditions
(CC) of the preceding one. As the Janet sequence can be cut at any place, the numbering of the
Janet bundles has nothing to do with that of the Poincaré sequence, contrary to what many physicists
believe.

Definition 4.3. The Janet sequence is said to be locally exact at Fr if any local section of Fr killed by
Dr+1 is the image by Dr of a local section of Fr−1. It is called locally exact if it is locally exact at each
Fr for 0 ≤ r ≤ n. The Poincaré sequence is locally exact but counterexemples may exist ([23], p 202).

Equivalently, we have the involutive first Spencer operator D1 : C0 = Rq
j1→

J1(Rq) → J1(Rq)/Rq+1 � T∗ ⊗ Rq/δ(gq+1) = C1 of order one induced by
D : Rq+1 → T∗ ⊗ Rq. Introducing the Spencer bundles Cr = ∧rT∗ ⊗ Rq/δ(∧r−1T∗ ⊗ gq+1),
the first order involutive (r + 1)-Spencer operator Dr+1 : Cr → Cr+1 is induced by
D : ∧rT∗ ⊗ Rq+1 → ∧r+1T∗ ⊗ Rq : α⊗ ξq+1 → dα⊗ ξq + (−1)rα ∧ Dξq+1 and we obtain the
canonical linear Spencer sequence ([4], p 150):

0 −→ Θ
jq−→ C0

D1−→ C1
D2−→ C2

D3−→ ...
Dn−→ Cn −→ 0

as the Janet sequence for the first order involutive system Rq+1 ⊂ J1(Rq).

The Janet sequence and the Spencer sequence are connected by the following crucial
commutative diagram (1) where the Spencer sequence is induced by the locally exact central
horizontal sequence which is at the same time the Janet sequence for jq and the Spencer
sequence for Jq+1(E) ⊂ J1(Jq(E)) ([25], p 152):
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SPENCER SEQUENCE
0 0 0 0
↓ ↓ ↓ ↓

0 −→ Θ
jq−→ C0

D1−→ C1
D2−→ C2

D3−→ ...
Dn−→ Cn −→ 0

↓ ↓ ↓ ↓
0 −→ E

jq−→ C0(E) D1−→ C1(E) D2−→ C2(E) D3−→ ...
Dn−→ Cn(E) −→ 0

‖ ↓ Φ0 ↓ Φ1 ↓ Φ2 ↓ Φn

0 −→ Θ −→ E D−→ F0
D1−→ F1

D2−→ F2
D3−→ ...

Dn−→ Fn −→ 0
↓ ↓ ↓ ↓
0 0 0 0

JANET SEQUENCE

In this diagram, only depending on the left commutative square D = Φ ◦ jq, the epimorhisms

Φr : Cr(E) → Fr for 0 ≤ r ≤ n are successively induced by the canonical projection Φ = Φ0 :
C0(E) = Jq(E)→ Jq(E)/Rq = F0.

Example 4.1. (Screw structure): The system R1 ⊂ J1(T) defined by ξ1
2 = 0, ξ2

2− ξ1
1 = 0 is involutive

with par(R2) = {ξ1, ξ2, ξ1
1, ξ2

1, ξ1
11, ξ2

11}. The Spencer operator is not involutive as it is not even
formally integrable because ∂2ξ2

1 − ξ1
11 = 0, ∂1ξ2

1 − ξ2
11 = 0 ⇒ ∂1ξ1

11 − ∂2ξ2
11 = 0. We obtain

dim(F0) = 2, dim(C0(T)) = 6 ⇒ dim(C0) = dim(R1) = 4, dim(F1) = 0 ⇒ dim(C1(T)) =
dim(C1) = 6, dim(C2(T)) = dim(C2) = 2 and it is not evident at all that the first order involutive
operator D1 : C0 → C1 is defined by the 6 PD equations for 4 unknowns:

∂2ξ1 = 0, ∂2ξ2 − ξ1
1 = 0, ∂2ξ1

1 = 0, ∂2ξ2
1 − ∂1ξ1

1 = 0, ∂1ξ1 − ξ1
1 = 0, ∂1ξ2 − ξ2

1 = 0

The case of a complex structure is similar and left to the reader.

5. Differential modules and inverse systems

An important but difficult problem in engineering physics is to study how the formal
properties of a system of order q with n independent variables and m unknowns depend
on the parameters involved in that system. This is particularly clear in classical control theory
where the systems are classified into two categories, namely the "controllable" ones and the
"uncontrollable" ones ([14],[27]). In order to understand the problem studied by Macaulay in
[M], that is roughly to determine the minimum number of solutions of a system that must be
known in order to determine all the others by using derivatives and linear combinations with
constant coefficients in a field k, let us start with the following motivating example:

Example 5.1. When n = 1, m = 1, q = 3, using a sub-index x for the derivatives with dxy = yx
and so on, the general solution of yxxx − yx = 0 is y = aex + be−x + c1 with a, b, c constants
and the derivative of ex is ex, the derivative of e−x is −e−x and the derivative of 1 is 0. Hence we
could believe that we need a basis {1, ex, e−x} with three generators for obtaining all the solutions
through derivatives. Also, when n = 1, m = 2, k = R and a is a constant real parameter, the OD
system y1

xx − ay1 = 0, y2
x = 0 needs two generators {(x, 0), (0, 1)} when a = 0 with the only

dx killing both y1
x and y2 but only one generator when a 	= 0, namely {(ch(x), 1)} when a = 1.

Indeed, setting y = y1 − y2 brings y1 = yxx, y2 = yxx − y and an equivalent system defined by the
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single OD equation yxxx − yx = 0 for the only y. Introducing the corresponding polynomial ideal
(χ3 − χ) = (χ)∩ (χ− 1)∩ (χ + 1), we check that dx kills yxx − y, dx − 1 kills yxx + yx and dx + 1
kills yxx − yx, a result leading, as we shall see, to the only generator {ch(x)− 1}.

More precisely, if K is a differential field containing Q with n commuting derivations ∂i, that is
to say ∂i(a + b) = ∂ia + ∂ib and ∂i(ab) = (∂ia)b + a∂ib, ∀a, b ∈ K for i = 1, ..., n, we denote by
k a subfield of constants. Let us introduce m differential indeterminates yk for k = 1, ..., m and
n commuting formal derivatives di with diyk

μ = yk
μ+1i

. We introduce the non-commutative ring
of differential operators D = K[d1, ..., dn] = K[d] with dia = adi + ∂ia, ∀a ∈ K in the operator
sense and the differential module Dy = Dy1 + ... + Dym. If {Φτ = aτμ

k yk
μ} is a finite number of

elements in Dy indexed by τ, we may introduce the differential module of equations I = DΦ ⊂
Dy and the finitely generated residual differential module M = Dy/I.

In the algebraic framework considered, only two possible formal constructions can be obtained from
M when D = K[d], namely homD(M, D) and M∗ = homK(M, K) ([3],[27],[32]).

Theorem 5.1. homD(M, D) is a right differential module that can be converted to a left differential
module by introducing the right differential module structure of ∧nT∗. As a differential geometric
counterpart, we get the formal adjoint of D, namely ad(D) : ∧nT∗ ⊗ F∗ → ∧nT∗ ⊗ E∗ usually
constructed through an integration by parts and where E∗ is obtained from E by inverting the local
transition matrices, the simplest example being the way T∗ is obtained from T.

Remark 5.1. Such a result explains why dual objects in physics and engineering are no longer tensors
but tensor densities, with no reference to any variational calculus. For example the EM potential is
a section of T∗ and the EM field is a section of ∧2T∗ while the EM induction is a section of ∧4T∗ ⊗
∧2T � ∧2T∗ and the EM current is a section of ∧4T∗ ⊗ T � ∧3T∗ when n = 4.

The filtration D0 = K ⊆ D1 = K ⊕ T ⊆ ... ⊆ Dq ⊆ ... ⊆ D of D by the order of operators
induces a filtration/inductive limit 0 ⊆ M0 ⊆ M1 ⊆ ... ⊆ Mq ⊆ ... ⊆ M and provides by
duality over K the projective limit M∗ = R → ... → Rq → ... → R1 → R0 → 0 of formally
integrable systems. As D is generated by K and T = D1/D0, we can define for any f ∈ M∗:

(a f )(m) = a f (m) = f (am), (ξ f )(m) = ξ f (m)− f (ξm), ∀a ∈ K, ∀ξ = aidi ∈ T, ∀m ∈ M

and check dia = adi + ∂ia, ξη − ηξ = [ξ, η] in the operator sense by introducing the standard
bracket of vector fields on T. Finally we get (di f )k

μ = (di f )(yk
μ) = ∂i f k

μ − f k
μ+1i

in a coherent
way.

Theorem 5.2. R = M∗ has a structure of differential module induced by the Spencer operator.

Remark 5.2. When m = 1 and D = k[d] is a commutative ring isomorphic to the polynomial ring
A = k[χ] for the indeterminates χ1, ..., χn, this result exactly describes the inverse system of Macaulay
with −di = δi ([M], §59,60).

Definition 5.1. A simple module is a module having no other proper submodule than 0. A semi-simple
module is a direct sum of simple modules. When A is a commutative integral domain and M a finitely
generated module over A, the socle of M is the largest semi-simple submodule of M, that is soc(M) =
⊕socm(M) where socm(M) is the direct sum of all the isotypical simple submodules of M isomorphic
to A/m for m ∈ max(A) the set of maximal proper ideals of A. The radical of a module is the
intersection of all its maximum proper submodules. The quotient of a module by its radical is called the
top and is a semi-simple module ([3]).
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The "secret " of Macaulay is expressed by the next theorem:

Theorem 5.3. Instead of using the socle of M over A, one may use duality over k in order to deal with
the short exact sequence 0 → rad(R)→ R → top(R)→ 0 where top(R) is the dual of soc(M).

However, Nakayama’s lemma ([3],[19],[32]) cannot be used in general unless R is finitely
generated over k and thus over D. The main idea of Macaulay has been to overcome this
difficulty by dealing only with unmixed ideals when m = 1. As a generalization, one can state
([27]):

Definition 5.2. One has the purity filtration 0 = tn(M) ⊆ ... ⊆ t0(M) = t(M) ⊆ M where any
involutive system of order p defining Dm is such that αn−r

p = 0, ..., αn
p = 0 when m ∈ tr(M) and M

is said to be r-pure if tr(M) = 0, tr−1(M) = M. With t(M) = {m ∈ M | ∃0 	= a ∈ A, am = 0} we
say that M is a 0-pure or torsion-free module if t(M) = 0 and a torsion module if t(M) = M.

Example 5.2. With n = 2, q = 2, let us consider the involutive system y(0,2) ≡ y22 = 0, y(1,1) ≡
y12 = 0. Then z′ = y1 satisfies z′2 = 0 while z′′ = y2 satisfies z′′2 = 0, z′′1 = 0 and we have
the filtration 0 = t2(M) ⊂ t1(M) ⊂ t0(M) = t(M) = M with z′′ ∈ t1(M), z′ ∈ t0(M) but
z′ /∈ t1(M). This classification of observables has never been applied to engineering systems like the
ones to be found in magnetohydrodynamics (MHD) because the mathematics involved are not known.

Remark 5.3. A standard result in commutative algebra allows to embed any torsion-free module into
a free module ([32]). Such a property provides the possibility to parametrize the solution space of the
corresponding system of OD/PD equations by a finite number of potential like arbitrary functions. For
this, in order to test the possibility to parametrize a given operator D1, one may construct the adjoint
operator ad(D1) and look for generating CC in the form of an operator ad(D). As ad(D) ◦ ad(D1) =
ad(D1 ◦D) = 0 ⇒ D1 ◦D = 0, it only remains to check that the CC ofD are generated byD1. When
n = 1 this result amounts to Kalman test and the fact that a classical OD control system is controllable
if and only if it is parametrizable, a result showing that controllability is an intrinsic structural property
of a control system, not depending on the choice of inputs and outputs contrary to a well established
engineering tradition ([14],[27]). When n = 2, the formal adjoint of the only CC for the deformation
tensor has been used in the Introduction in order to parametrize the stress equation by means of the
Airy function. This result is also valid for the non-commutative ring D = K[d].

Example 5.3. With K = Q(x1, x2, x3), infinitesimal contact transformations are defined by the
system ∂2ξ1 − x3∂2ξ2 + x3∂1ξ1 − (x3)2∂1ξ2 − ξ3 = 0, ∂3ξ1 − x3∂3ξ2 = 0. Multiplying by
test functions (λ1, λ2) and integrating by parts, we obtain the adjoint operator (up to sign):

∂2λ1 + x3∂1λ1 + ∂3λ2 = μ1, −x3∂2λ1 − (x3)2∂1λ1 − x3∂3λ2 − λ2 = μ2, λ1 = μ3

It follows that λ1 = μ3, λ2 = −μ2 − x3μ1 ⇒ ∂2μ3 + x3∂1μ3 − ∂3μ2 − x3∂3μ1 − 2μ1 = 0.
Multiplying again by a test function φ, we discover the parametrization ξ1 = x3∂3φ − φ, ξ2 =
∂3φ, ξ3 = −∂2φ− x3∂1φ which is not evident at first sight.

When M is r-pure, Theorem 4.3 provides the exact sequence 0 → M → k(χ1, ..., χn−r) ⊗
M, also discovered by Macaulay ([M], §77, 82), and one obtains the following key
result for studying the identifiability of OD/PD control systems (see localization in
([19],[27],32[29],[30],[32]).
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Theorem 5.4. When M is n-pure, one may use the chinese remainder theorem ([19], p 41) in order
to prove that the minimum number of generators of R is equal to the maximum number of isotypical
components that can be found among the various components of soc(M) or top(R). When M is r-pure
but r ≤ n− 1, the minimum number of generators of R is smaller or equal to the smallest non-zero
character.

6. Janet versus Spencer : The nonlinear sequences

Nonlinear operators do not in general admit CC as can be seen by considering the involutive
example y22 − 1

3 (y11)
3 = u, y12 − 1

2 (y11)
2 = v with m = 1, n = 2, q = 2, contrary to what

happens in the study of Lie pseudogroups. However, the kernel of a linear operatorD : E → F
is always taken with respet to the zero section of F, while it must be taken with respect to a
prescribed section by a double arrow for a nonlinear operator. Keeping in mind the linear Janet
sequence and the examples of Vessiot structure equations already presented, one obtains:

Theorem 6.1. There exists a nonlinear Janet sequence associated with the Lie form of an involutive
system of finite Lie equations:

Φω ◦ jq I ◦ j1
0 → Γ → aut(X) ⇒ F ⇒ F1

ω ◦ α 0

where the kernel of the first operator f → Φω ◦ jq( f ) = Φω(jq( f )) = jq( f )−1(ω) is taken with
respect to the section ω of F while the kernel of the second operator ω → I(j1(ω)) ≡ A(ω)∂xω +
B(ω) is taken with respect to the zero section of the vector bundle F1 over F .

Corollary 6.1. By linearization at the identity, one obtains the involutive Lie operator D = Dω :
T → F0 : ξ → L(ξ)ω with kernel Θ = {ξ ∈ T|L(ξ)ω = 0} ⊂ T satisfying [Θ, Θ] ⊂ Θ and the
corresponding linear Janet sequence where F0 = ω−1(V(F )) and F1 = ω−1(F1).

Now we notice that T is a natural vector bundle of order 1 and Jq(T) is thus a natural vector
bundle of order q + 1. Looking at the way a vector field and its derivatives are transformed
under any f ∈ aut(X) while replacing jq( f ) by fq, we obtain:

ηk( f (x)) = f k
r (x)ξr(x)⇒ ηk

u( f (x)) f u
i (x) = f k

r (x)ξr
i (x) + f k

ri(x)ξr(x)

and so on, a result leading to:

Lemma 6.1. Jq(T) is associated with Πq+1 = Πq+1(X, X) that is we can obtain a new section
ηq = fq+1(ξq) from any section ξq ∈ Jq(T) and any section fq+1 ∈ Πq+1 by the formula:

dμηk ≡ ηk
r f r

μ + ... = f k
r ξr

μ + ... + f k
μ+1r

ξr, ∀0 ≤ |μ| ≤ q

where the left member belongs to V(Πq). Similarly Rq ⊂ Jq(T) is associated withRq+1 ⊂ Πq+1.

In order to construct another nonlinear sequence, we need a few basic definitions on Lie
groupoids and Lie algebroids that will become substitutes for Lie groups and Lie algebras.
As in the beginning of section 3, the first idea is to use the chain rule for derivatives
jq(g ◦ f ) = jq(g) ◦ jq( f ) whenever f , g ∈ aut(X) can be composed and to replace both jq( f )
and jq(g) respectively by fq and gq in order to obtain the new section gq ◦ fq. This kind of
"composition" law can be written in a pointwise symbolic way by introducing another copy
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Z of X with local coordinates (z) as follows:

γq : Πq(Y, Z)×YΠq(X, Y)→ Πq(X, Z) : ((y, z,
∂z
∂y

, ...), (x, y,
∂y
∂x

, ...)→ (x, z,
∂z
∂y

∂y
∂x

, ...)

We may also define jq( f )−1 = jq( f−1) and obtain similarly an "inversion" law.

Definition 6.1. A fibered submanifold Rq ⊂ Πq is called a system of finite Lie equations or a Lie
groupoid of order q if we have an induced source projection αq : Rq → X, target projection βq : Rq →
X, composition γq : Rq×XRq → Rq, inversion ιq : Rq → Rq and identity idq : X → Rq. In the
sequel we shall only consider transitive Lie groupoids such that the map (αq, βq) : Rq → X × X is
an epimorphism and we shall denote by R0

q = id−1(Rq) the isotropy Lie group bundle of Rq. Also,
one can prove that the new system ρr(Rq) = Rq+r obtained by differentiating r times all the defining
equations of Rq is a Lie groupoid of order q + r. Finally, one can write down the Lie form and obtain
Rq = { fq ∈ Πq| f−1

q (ω) = ω}.

Now, using the algebraic bracket {jq+1(ξ), jq+1(η)} = jq([ξ, η]), ∀ξ, η ∈ T, we may obtain by
bilinearity a differential bracket on Jq(T) extending the bracket on T:

[ξq, ηq] = {ξq+1, ηq+1}+ i(ξ)Dηq+1 − i(η)Dξq+1, ∀ξq, ηq ∈ Jq(T)

which does not depend on the respective lifts ξq+1 and ηq+1 of ξq and ηq in Jq+1(T). This
bracket on sections satisfies the Jacobi identity and we set:

Definition 6.2. We say that a vector subbundle Rq ⊂ Jq(T) is a system of infinitesimal Lie equations
or a Lie algebroid if [Rq, Rq] ⊂ Rq, that is to say [ξq, ηq] ∈ Rq, ∀ξq, ηq ∈ Rq. The kernel R0

q of the
projection π

q
0 : Rq → T is the isotropy Lie algebra bundle of R0

q and [R0
q, R0

q ] ⊂ R0
q does not contain

derivatives. Such a definition can be checked by means of computer algebra.

Proposition 6.1. There is a nonlinear differential sequence:

0 −→ aut(X)
jq+1−→ Πq+1(X, X)

D̄−→ T∗ ⊗ Jq(T)
D̄′−→ ∧2T∗ ⊗ Jq−1(T)

with D̄ fq+1 ≡ f−1
q+1 ◦ j1( fq) − idq+1 = χq ⇒ D̄′χq(ξ, η) ≡ Dχq(ξ, η) − {χq(ξ), χq(η)} = 0.

Moreover, setting χ0 = A− id ∈ T∗ ⊗ T, this sequence is locally exact if det(A) 	= 0.

Proof. There is a canonical inclusion Πq+1 ⊂ J1(Πq) defined by yk
μ,i = yk

μ+1i
and the

composition f−1
q+1 ◦ j1( fq) is a well defined section of J1(Πq) over the section f−1

q ◦ fq = idq of

Πq like idq+1. The difference χq = f−1
q+1 ◦ j1( fq)− idq+1 is thus a section of T∗ ⊗ V(Πq) over

idq and we have already noticed that id−1
q (V(Πq)) = Jq(T). For q = 1 we get with g1 = f−1

1 :

χk
,i = gk

l ∂i f l − δk
i = Ak

i − δk
i , χk

j,i = gk
l (∂i f l

j − Ar
i f l

rj)

We also obtain from Lemma 6.1 the useful formula f k
r χr

μ,i + ... + f k
μ+1r

χr
,i = ∂i f k

μ − f k
μ+1i

allowing to determine χq inductively.
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We refer to ([26], p 215) for the inductive proof of the local exactness, providing the only
formulas that will be used later on and can be checked directly by the reader:

∂iχ
k
,j − ∂jχ

k
,i − χk

i,j + χk
j,i − (χr

,iχ
k
r,j − χr

,jχ
k
r,i) = 0

∂iχ
k
l,j − ∂jχ

k
l,i − χk

li,j + χk
lj,i − (χr

,iχ
k
lr,j + χr

l,iχ
k
r,j − χr

l,jχ
k
r,i − χr

,jχ
k
lr,i) = 0

There is no need for double-arrows in this framework as the kernels are taken with respect to
the zero section of the vector bundles involved. We finally notice that the main difference with
the gauge sequence is that all the indices range from 1 to n and that the condition det(A) 	= 0
amounts to Δ = det(∂i f k) 	= 0 because det( f k

i ) 	= 0 by assumption.

Corollary 6.2. There is a restricted nonlinear differential sequence:

0 −→ Γ
jq+1−→ Rq+1

D̄−→ T∗ ⊗ Rq
D̄′−→ ∧2T∗ ⊗ Jq−1(T)

Definition 6.3. A splitting of the short exact sequence 0 → R0
q → Rq

π
q
0→ T → 0 is a map χ′q : T →

Rq such that π
q
0 ◦ χ′q = idT or equivalently a section of T∗ ⊗ Rq over idT ∈ T∗ ⊗ T and is called a

Rq-connection. Its curvature κ′q ∈ ∧2T∗ ⊗ R0
q is defined by κ′q(ξ, η) = [χ′q(ξ), χ′q(η)]− χ′q([ξ, η]).

We notice that χ′q = −χq is a connection with D̄′χ′q = κ′q if and only if A = 0. In particular
(δk

i ,−γk
ij) is the only existing symmetric connection for the Killing system.

Remark 6.1. Rewriting the previous formulas with A instead of χ0 we get:

∂i Ak
j − ∂j Ak

i − Ar
i χk

r,j + Ar
j χ

k
r,i = 0

∂iχ
k
l,j − ∂jχ

k
l,i − χr

l,iχ
k
r,j + χr

l,jχ
k
r,i − Ar

i χk
lr,j + Ar

j χ
k
lr,i = 0

When q = 1, g2 = 0 and though surprising it may look like, we find back exactly all the formulas
presented by E. and F. Cosserat in ([C], p 123 and [16]). Even more strikingly, in the case of a Riemann
structure, the last two terms disappear but the quadratic terms are left while, in the case of screw and
complex structures, the quadratic terms disappear but the last two terms are left.

Corollary 6.3. When det(A) 	= 0 there is a nonlinear stabilized sequence at order q:

0 −→ aut(X)
jq−→ Πq

D̄1−→ C1(T)
D̄2−→ C2(T)

called nonlinear Spencer sequence where D̄1 and D̄2 are involutive and its restriction:

0 −→ Γ
jq−→ Rq

D̄1−→ C1
D̄2−→ C2

is such that D̄1 and D̄2 are involutive wheneverRq is involutive.

Proof. : With |μ| = q we have χk
μ,i = −gk

l Ar
i f l

μ+1r
+ terms(order ≤ q). Setting χk

μ,i = Ar
i τk

μ,r,

we obtain τk
μ,r = −gk

l f l
μ+1r

+ terms(order ≤ q) and D̄ : Πq+1 → T∗ ⊗ Jq(T) restricts to
D̄1 : Πq → C1(T).
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Finally, setting A−1 = B = id− τ0, we obtain successively:

∂iχ
k
μ,j − ∂jχ

k
μ,i + terms(χq)− (Ar

i χk
μ+1r ,j − Ar

j χ
k
μ+1r ,i) = 0

Bi
rBj

s(∂iχ
k
μ,j − ∂jχ

k
μ,i) + terms(χq)− (τk

μ+1r ,s − τk
μ+1s ,r) = 0

We obtain therefore Dτq+1 + terms(τq) = 0 and D̄′ : T∗ ⊗ Jq(T)→ ∧2T∗ ⊗ Jq−1(T) restricts to
D̄2 : C1(T)→ C2(T).
In the case of Lie groups of transformations, the symbol of the involutive system Rq must
be gq = 0 providing an isomorphism Rq+1 � Rq ⇒ Rq+1 � Rq and we have therefore
Cr = ∧rT∗ ⊗ Rq for r = 1, ..., n in the linear Spencer sequence.

Remark 6.2. The passage from χq to τq is exactly the one done by E. and F. Cosserat in ([C], p 190).
However, even if is a good idea to pass from the source to the target, the way they realize it is based on
a subtle misunderstanding that we shall correct later on in Proposition 6.3.

If fq+1, gq+1 ∈ Πq+1 and f ′q+1 = gq+1 ◦ fq+1, we get:

D̄ f ′q+1 = f−1
q+1 ◦ g−1

q+1 ◦ j1(gq) ◦ j1( fq)− idq+1 = f−1
q+1 ◦ D̄gq+1 ◦ j1( fq) + D̄ fq+1

Definition 6.4. For any section fq+1 ∈ Rq+1, the transformation:

χq −→ χ′q = f−1
q+1 ◦ χq ◦ j1( fq) + D̄ fq+1

is called a gauge transformation and exchanges the solutions of the field equations D̄′χq = 0.

Introducing the formal Lie derivative on Jq(T) by the formulas:

L(ξq+1)ηq = {ξq+1, ηq+1}+ i(ξ)Dηq+1 = [ξq, ηq] + i(η)Dξq+1

(L(j1(ξq+1))χq)(ζ) = L(ξq+1)(χq(ζ))− χq([ξ, ζ])

and passing to the limit with fq+1 = idq+1 + tξq+1 + ... for t → 0 over the source, we get:

Lemma 6.2. An infinitesimal gauge transformation has the form:

δχq = Dξq+1 + L(j1(ξq+1))χq

Passing again to the limit but now over the target with χq = D̄ fq+1 and gq+1 = idq+1 + tηq+1 + ...,
we obtain the variation:

δχq = f−1
q+1 ◦ Dηq+1 ◦ j1( fq)

Proposition 6.2. The same variation is obtained whenever ηq+1 = fq+2(ξq+1 + χq+1(ξ)) with
χq+1 = D̄ fq+2, a transformation which only depends on j1( fq+1) and is invertible if and only if
det(A) 	= 0.
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Proof. : Choosing fq+1, gq+1, hq+1 ∈ Rq+1 such that gq+1 ◦ fq+1 = fq+1 ◦ hq+1 and passing to
the limits gq+1 = idq+1 + tηq+1 + ... and hq+1 = idq+1 + tξq+1 + ... when t → 0, we obtain the
local formula:

dμηk = ηk
r f r

μ + ... = ξ i(∂i f k
μ − f k

μ+1i
) + f k

μ+1r
ξr + ... + f k

r ξr
μ

and thus ηq+1 = fq+2(ξ̄q+1) with ξ̄q+1 = ξq+1 + χq+1(ξ). This transformation is invertible if
and only if ξ → ξ̄ = ξ + χ0(ξ) = A(ξ) is an isomorphism of T.

Example 6.1. For q = 1, we obtain from δχq = Dξ̄q+1 − {χq+1, ξ̄q+1}:

δχk
,i = (∂iξ

k − ξk
i ) + (ξr∂rχk

,i + χk
,r∂iξ

r − χr
,iξ

k
r )

= (∂i ξ̄
k − ξ̄k

i ) + (χk
r,i ξ̄

r − χr
,i ξ̄

k
r )

δχk
j,i = (∂iξ

k
j − ξk

ij) + (ξr∂rχk
j,i + χk

j,r∂iξ
r + χk

r,iξ
r
j − χr

j,iξ
k
r − χr

,iξ
k
jr)

= (∂i ξ̄
k
j − ξ̄k

ij) + (χk
rj,i ξ̄

r + χk
r,i ξ̄

r
j − χr

j,i ξ̄
k
r − χr

,i ξ̄
k
jr)

For the Killing system R1 ⊂ J1(T) with g2 = 0, these variations are exactly the ones that can be
found in ([C], (50)+(49), p 124 with a printing mistake corrected on p 128) when replacing a 3× 3
skewsymmetric matrix by the corresponding vector. The last unavoidable Proposition is thus essential
in order to bring back the nonlinear framework of finite elasticity to the linear framewok of infinitesimal
elasticity that only depends on the linear Spencer operator.

For the conformal Killing system R̂1 ⊂ J1(T) (see next section) we obtain:

αi = χr
r,i ⇒ δαi = (∂iξ

r
r − ξr

ri) + (ξr∂rαi + αr∂iξ
r + χs

,iξ
r
rs)

This is exactly the variation obtained by Weyl ([W], (76), p 289) who was assuming implicitly A = 0
when setting ξ̄r

r = 0 ⇔ ξr
r = −αiξ

i by introducing a connection. Accordingly, ξr
ri is the variation

of the EM potential itself, that is the δAi of engineers used in order to exhibit the Maxwell equations
from a variational principle ([W], § 26) but the introduction of the Spencer operator is new in this
framework.

Finally, chasing in diagram (1) , the Spencer sequence is locally exact at C1 if and only if the
Janet sequence is locally exact at F0 because the central sequence is locally exact. The situation
is much more complicate in the nonlinear framewok. Let ω̄ be a section of F satisfying the same
CC as ω, namely I(j1(ω)) = 0. It follows that we can find a section fq+1 ∈ Πq+1 such that
f−1
q (ω) = ω̄ ⇒ j1( f−1

q )(j1(ω)) = j1( f−1
q (ω)) = j1(ω̄) and f−1

q+1(j1(ω)) = j1(ω̄). We obtain

therefore j1( f−1
q )(j1(ω)) = f−1

q+1(j1(ω)) ⇒ ( fq+1 ◦ j1( f−1
q ))−1(j1(ω))− j1(ω) = L(σq)ω = 0

and thus σq = D̄ f−1
q+1 ∈ T∗ ⊗ Rq over the target, even if fq+1 may not be a section of Rq+1.

As σq is killed by D̄′, we have related cocycles at F in the Janet sequence over the source with
cocycles at T∗ ⊗ Rq or C1 over the target.

Now, if fq+1, f ′q+1 ∈ Πq+1 are such that f−1
q+1(j1(ω)) = f ′−1

q+1(j1(ω)) = j1(ω̄), it follows that

( f ′q+1 ◦ f−1
q+1)(j1(ω)) = j1(ω) ⇒ ∃gq+1 ∈ Rq+1 such that f ′q+1 = gq+1 ◦ fq+1 and the new

σ′q = D̄ f ′−1
q+1 differs from the initial σq = D̄ f−1

q+1 by a gauge transformation.
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Conversely, let fq+1, f ′q+1 ∈ Πq+1 be such that σq = D̄ f−1
q+1 = D̄ f ′−1

q+1 = σ′q. It follows that

D̄( f−1
q+1 ◦ f ′q+1) = 0 and one can find g ∈ aut(X) such that f ′q+1 = fq+1 ◦ jq+1(g) providing

ω̄′ = f ′−1
q (ω) = ( fq ◦ jq(g))−1(ω) = jq(g)−1( f−1

q (ω)) = jq(g)−1(ω̄).

Proposition 6.3. Natural transformations of F over the source in the nonlinear Janet sequence
correspond to gauge transformations of T∗ ⊗ Rq or C1 over the target in the nonlinear Spencer
sequence. Similarly, the Lie derivative Dξ = L(ξ)ω ∈ F0 in the linear Janet sequence corresponds to
the Spencer operator Dξq+1 ∈ T∗ ⊗ Rq or D1ξq ∈ C1 in the linear Spencer sequence.

With a slight abuse of language δ f = η ◦ f ⇔ δ f ◦ f−1 = η ⇔ f−1 ◦ δ f = ξ when η =
T( f )(ξ) and we get jq( f )−1(ω) = ω̄ ⇒ jq( f + δ f )−1(ω) = ω̄ + δω̄ that is jq( f−1 ◦ ( f +
δ f ))−1(ω̄) = ω̄ + δω̄ ⇒ δω̄ = L(ξ)ω̄ and jq(( f + δ f ) ◦ f−1 ◦ f )−1(ω) = jq( f )−1(jq(( f +
δ f ) ◦ f−1)−1(ω))⇒ δω̄ = jq( f )−1(L(η)ω).
Passing to the infinitesimal point of view, we obtain the following generalization of Remark
3.3 which is important for applications ([2], AJSE-mathematics):

Corollary 6.4. δω̄ = L(ξ)ω̄ = jq( f )−1(L(η)ω).

Example 6.2. In Example 3.1 with n = 1, q = 1, we have ω( f (x)) fx(x) = ω̄(x), ω( f (x)) fxx(x) +
∂yω( f (x)) f 2

x (x) = ∂xω̄(x) and obtain therefore ωσy,y + σ,y∂yω ≡ −ω(1/ fx)(∂x fx −
fxx)(1/∂x f ) + (( fx/∂x f ) − 1)∂yω = 0 whenever y = f (x). The case of an affine stucture needs
more work.

7. Cosserat versus Weyl: New perspectives for physics

As an application of the previous mehods, let us now consider the conformal Killing system:

R̂1 ⊂ J1(T) ωrjξ
r
i + ωirξr

j + ξr∂rωij = A(x)ωij

with symbols:

ĝ2 ⊂ S2T∗ ⊗ T nξk
ij = δk

i ξr
rj + δk

j ξr
ri −ωijω

ksξr
rs ⇒ ĝ3 = 0, ∀n ≥ 3

obtained by eliminating the arbitrary function A(x), where ω is the Euclidean metric when
n = 1 (line), n = 2 (plane) or n = 3 (space) and the Minskowskian metric when n = 4
(space-time).

The brothers Cosserat were only dealing with the Killing subsystem:

R1 ⊂ R̂1 ωrjξ
r
i + ωirξr

j + ξr∂rωij = 0

that is with {ξk, ξk
i | ξr

r = 0, ξk
ij = 0} = {translations, rotations} when A(x) = 0, while, in a

somehow complementary way, Weyl was mainly dealing with {ξr
r , ξr

ri} = {dilatation, elations}.
Accordingly, one has ([7]):

Theorem 7.1. The Cosserat equations ([C], p 137 for n = 3, p 167 for n = 4):

∂rσi,r = f i , ∂rμij,r + σi,j − σj,i = mij

are exactly described by the formal adjoint of the first Spencer operator D1 : R1 → T∗ ⊗ R1.
Introducing φr,ij = −φr,ji and ψrs,ij = −ψrs,ji = −ψsr,ij, they can be parametrized by the formal
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adjoint of the second Spencer operator D2 : T∗ ⊗ R1 → ∧2T∗ ⊗ R1:

σi,j = ∂rφi,jr , μij,r = ∂sψij,rs + φj,ir − φi,jr

Example 7.1. When n = 2, lowering the indices by means of the constant metric ω, we just need to
look for the factors of ξ1, ξ2 and ξ1,2 in the integration by parts of the sum:

σ1,1(∂1ξ1− ξ1,1) + σ1,2(∂2ξ1− ξ1,2) + σ2,1(∂1ξ2− ξ2,1) + σ2,2(∂2ξ2− ξ2,2) + μ12,r(∂rξ1,2− ξ1,2r)

Finally, setting φ1,12 = φ1, φ2,12 = φ2, ψ12,12 = φ3, we obtain the nontrivial parametrization σ1,1 =
∂2φ1, σ1,2 = −∂1φ1, σ2,1 = −∂2φ2, σ2,2 = ∂1φ2, μ12,1 = ∂2φ3 + φ1, μ12,2 = −∂1φ3 − φ2 in a
coherent way with the Airy parametrization obtained when φ1 = ∂2φ, φ2 = ∂1φ, φ3 = −φ.

Remark 7.1. First of all, it is clear that [C] (p 13,14 for n = 1, p 75,76 for n = 2) still deals with
m = 3 for the "ambient space", that is with the construction of the nonlinear gauge sequence, in
particular for the dynamical study of a line with arc length s and time t considered as a surface, hence
with no way to pass from the source to the target, only possible, as we have seen, when m = n = 3
by using the nonlinear Spencer sequence. For n = 4, the group of rigid motions of space is extended
to space-time by using only a translation on time and we can rewrite the formulas in ([C], p 167) as
follows:

d
dt

=
dx
dt

∂

∂x
+

dy
dt

∂

∂y
+

dz
dt

∂

∂z
+

∂

∂t
⇒ ∂pxx

∂x
+ ... +

1
Δ

dA
dt

=
∂

∂x
(pxx +

A
Δ

dx
dt

) + ... +
∂

∂t
(

A
Δ
)

∂qxx

∂x
+ . . . + pyz − pzy +

1
Δ

dP
dt

+
C
Δ

dy
dt
− B

Δ
dz
dt

=
∂

∂x
(qxx +

P
Δ

dx
dt

) + . . .

+
∂

∂t
(

P
Δ
) + (pyz +

C
Δ

dy
dt

)− (pzy +
B
Δ

dz
dt

)

It is essential to notice that the Cosserat equations for n = 3 are still introduced today in a
phenomenological way ([35] is a good example), contrary to the "deductive" way used in ([C], p 1-6)
and that "intuition" will never allow to provide the relativistic Cosserat equations for n = 4 which are
presented for the first time.

Theorem 7.2. The Weyl equations ([W], §35) are exactly described by the formal adjoint of the first
Spencer operator D1 : R̂2 → T∗ ⊗ R̂2 when n = 4 and can be parametrized by the formal adjoint of
the second Spencer operator D2 : T∗ ⊗ R̂2 → T∗ ⊗ R̂2. In particular, among the components of the
first Spencer operator, one has ∂iξ

r
rj − ξr

ijr = ∂iξ
r
rj and thus the components ∂iξ

r
rj − ∂jξ

r
ri = Fij of the

EM field with EM potential ξr
ri = Ai coming from the second order jets (elations). It follows that D1

projects onto d : T∗ → ∧2T∗ and thus D2 projects onto the first set of Maxwell equations described
by d : ∧2T∗ → ∧3T∗. Indeed, the Spencer sequence projects onto the Poincaré sequence with a shift
by +1 in the degree of the exterior forms involved because both sequences are made with first order
involutive operators and the comment after diagram (1) can thus be used. By duality, the second set of
Maxwell equations thus appears among the Weyl equations which project onto the Cosserat equations
because of the inclusion R1 � R2 ⊂ R̂2.

Remark 7.2. When n = 4, the Poincaré group (10 parameters) is a subgroup of the conformal group
(15 parameters) which is not a maximal subgroup because it is a subgroup of the Weyl group (11
parameters) obtained by adding the only dilatation with infinitesimal generators xi∂i . However, the
optical group is another subgroup with 10 parameters which is maximal and the same procedure may be
applied to all these subgroups in order to study coupling phenomena. It is also important to notice that
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the first and second sets of Maxwell equations are invariant by any diffeomorphism and the conformal
group is only the group of invariance of the Minkowski constitutive laws in vacuum ([20])([27], p 492).

Remark 7.3. Though striking it may look like, there is no conceptual difference between the Cosserat
and Maxwell equations on space-time. As a byproduct, separating space from time, there is no
conceptual difference between the Lamé constants (mass per unit volume) of elasticity and the magnetic
(dielectric) constants of EM appearing in the respective wave speeds. For example, the speed of
longitudinal free vibrations of a thin elastic bar with Young modulus E and mass per unit volume ρ is
v =

√
E
ρ while the speed of light in a medium with magnetic constant μ and dielectric constant ε is

v =
√

1/μ
ε . In the first case, we have the 1-dimensional dynamical equations:

δ
∫
(

1
2

E(
∂ξ

∂x
)2 − 1

2
ρ(

∂ξ

∂t
)2)dxdt = 0 ⇒ E

∂2ξ

∂x2 − ρ
∂2ξ

∂t2 = 0

In the second case, studying the propagation in vacuum for simplicity, one uses to set �H =

(1/μ0)�B, �D = ε0�E with ε0μ0c2 = 1 in the induction equations and to substitute the space-time
parametrization dA = F of the field equations dF = 0 in the variational condition δ

∫
( 1

2 ε0�E2 −
1
2 (1/μ0)�B2)dxdt = 0. However, the second order PD equations thus obtained become wave equations
only if one assumes the Lorentz condition div(A) = ωij∂i Aj = 0 ([20]). This is not correct because
the Lagrangian of the corresponding variational problem with constraint must contain the additional
term λdiv(A) where λ is a Lagrange multiplier providing the equations �A = dλ as a 1-form and
thus �F = 0 as a 2-form when � is the Dalembertian ([27], p 885).

Remark 7.4. When studying static phenomena, ε = (εij) and �E = (Ei) are now on equal footing in
the Lagrangian, exactly like in the technique of finite elements. Starting with a homogeneous medium
at rest with no stress and electric induction, we may consider a quadratic Lagrangian Aijklεijεkl +

BijEiEj + CijkεijEk obtained by moving the indices by means of the Euclidean metric. The two first
terms describe (pure) linear elasticity and electrostatic while only the last quadratic coupling term
may be used in order to describe coupling phenomena. For an isotropic medium, the 3-tensor C must
vanish and such a coupling phenomenon, called piezzoelectricity, can only appear in non-isotropic
media like crystals, providing the additional stress σij = CijkEk and/or an additional electric induction
Dk = Cijkεij. Accordingly, if the medium is fixed, for example between the plates of a condenser, an
electric field may provide stress inside while, if the medium is deformed as in the piezzo-lighters, an
electric induction may appear and produce a spark. Finally, for an isotropic medium, we can only add
a cubic coupling term CijklεijEkEl responsible for photoelasticity as it provides the additional electric
induction Dl = (Cijklεij)Ek, modifying therefore the dielectric constant by a term depending linearly
on the deformation and thus modifying the index of refraction n because εμ0c2 = n2 with ε0μ0c2 = 1
in vacuum leads to ε = n2ε0. We may also identify the dimensionless "speed" vk/c � 1, ∀k = 1, 2, 3
(time derivative of position) with a first jet (Lorentz rotation) by setting ∂4ξk − ξk

4 = 0 and introduce
the speed of deformation by the formula 2νij = ωrj(∂iξ

r
4 − ξr

i4) + ωir(∂jξ
r
4 − ξr

j4) = ωrj∂iξ
r
4 +

ωir∂jξ
r
4 = ∂4(ωrj∂iξ

r + ωir∂jξ
r) = ωrj∂ivr + ωir∂jvr = ∂4εij, ∀1 ≤ i, j ≤ 3 in order to obtain

streaming birefringence in a similar way. These results perfectly agree with most of the field-matter
couplings known in engineering sciences ([28]) but contradict gauge theory ([15],[26]) and general
relativity ([W],[21]).

In order to justify the last remark, let G be a Lie group with identity e and parameters a acting
on X through the group action X × G → X : (x, a) → y = f (x, a) and (local) infinitesimal
generators θτ satisfying [θρ, θσ] = cτ

ρσθτ for ρ, σ, τ = 1, ..., dim(G). We may prolong the graph of
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this action by differentiating q times the action law in order to eliminate the parameters in the
following commutative and exact diagram whereRq is a Lie groupoid with local coordinates
(x, yq), source projection αq : (x, yq) → (x) and target projection βq : (x, yq) → (y) when q is
large enough:

0 → X× G −→ Rq → 0
‖ αq ↙ ↘ βq

X× G → X × X

The link between the various sections of the trivial principal bundle on the left (gauging
procedure) and the various corresponding sections of the Lie groupoid on the right with respect
to the source projection is expressed by the next commutative and exact diagram:

0 → X × G = Rq → 0
a = cst ↑↓↑ a(x) jq( f ) ↑↓↑ fq

X = X

Theorem 7.3. In the above situation, the nonlinear Spencer sequence is isomorphic to the nonlinear
gauge sequence and we have the following commutative and locally exact diagram:

X× G → T∗ ⊗ G MC→ ∧2T∗ ⊗ G
↓ ↓ ↓

0 → Γ → Rq
D̄→ T∗ ⊗ Rq

D̄′→ ∧2T∗ ⊗ Rq

The action is essential in the Spencer sequence but disappears in the gauge sequence.

Proof. If we consider the action y = f (x, a) and start with a section (x) → (x, a(x)) of X × G,
we obtain the section (x) → (x, f k

μ(x) = ∂μ f k(x, a(x))) of Rq. Setting b = a−1 = b(a),

we get y = f (x, a) ⇒ x = f (y, b) ⇒ y = f ( f (y, b(a), a) and thus ∂y
∂x

∂ f
∂b

∂b
∂a +

∂y
∂a = 0 with

∂ f
∂b = θ(x)ω(b) from the first fundamental theorem of Lie. With −ω(b)db = −dbb−1 = a−1da,
we obtain:

∂i f k
μ − f k

μ+1i
= di(∂μ f k(x, a(x))− ∂μ+1i f k(x, a(x))

= ∂μ(
∂ f k

∂aτ )∂iaτ

= −∂μ(
∂ f k

∂xr θr
τ(x))ωτ

σ(b)
∂bσ

∂aτ ∂iaτ

and thus χk
μ,i(x) = Aτ

i (x)∂μθk
τ(x) from the inductive formula allowing to define χq = D̄ fq+1.

As for the commutatitvity of the right square, we have:

∂iχ
k
μ,j − ∂jχ

k
μ,i − χk

μ+1i ,j + χk
μ+1j ,i = (∂i Aτ

j − ∂j Aτ
i )∂μθk

τ

({χq+1(∂i), χq+1(∂j)})k
μ = Aρ

i Aσ
j ∂μ([θρ, θσ])

k = cτ
ρσ Aρ

i Aσ
j ∂μθk

τ .

Introducing now the Lie algebra G = Te(G) and the Lie algebroid Rq ⊂ Jq(T), namely the
linearization of Rq at the q-jet of the identity y = x, we get the commutative and exact
diagram:

0 → X × G = Rq → 0
λ = cst ↑↓↑ λ(x) jq(ξ) ↑↓↑ ξq

X = X
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where the upper isomorphism is described by λτ(x) → ξk
μ(x) = λτ(x)∂μθk

τ(x) for q
large enough. The unusual Lie algebroid structure on X × G is described by the formula:
([λ, λ′])τ = cτ

ρσλρλ′σ + (λρθρ).λ′τ − (λ′σθσ).λτ which is induced by the ordinary bracket
[ξ, ξ ′] on T and thus depends on the action. Applying the Spencer operator, we finally obtain
∂iξ

k
μ(x) − ξk

μ+1i
(x) = ∂iλ

τ(x)∂μθk
τ(x) and the linear Spencer sequence is isomorphic to the

linear gauge sequence already introduced which is no longer depending on the action as it is
only the tensor product of the Poincaré sequence by G.

Example 7.2. Let us consider the group of affine transformations of the real line y = a1x + a2 with
n = 1, dim(G) = 2, q = 2, R2 defined by the system yxx = 0, R2 defined by ξxx = 0 and
the two infinitesimal generators θ1 = x ∂

∂x , θ2 = ∂
∂x . We get f (x) = a1(x)x + a2(x), fx(x) =

a1(x), fxx(x) = 0 and thus χ,x(x) = (1/ fx(x))∂x f (x) − 1 = (1/a1(x))(x∂xa1(x) +
∂xa2(x)) = xA1

x(x) + A2
x(x), χx,x(x) = (1/ fx(x))(∂x fx(x) − (1/ fx(x))∂x f (x) fxx(x)) =

(1/a1(x))∂xa1(x) = A1
x(x), χxx,x(x) = 0. Similarly, we get ξ(x) = λ1(x)x + λ2(x), ξx(x) =

λ1(x), ξxx(x) = 0. Finally, integrating by part the sum σ(∂xξ − ξx) + μ(∂xξx − ξxx) we obtain the
dual of the Spencer operator as ∂xσ = f , ∂xμ + σ = m that is to say the Cosserat equations for the
affine group of the real line.

It finally remains to study GR within this framework, as it is only "added" by Weyl
in an independent way and, for simplicity, we shall restrict to the linearized aspect.
First of all, it becomes clear from diagram (1) that the mathematical foundation of GR
is based on a confusion between the operator D1 (classical curvature alone) in the Janet
sequence when D is the Killing operator brought to involution and the operator D2 (gauge
curvature=curvature+torsion) in the corresponding Spencer sequence. It must also be noticed
that, according to the same diagram, the bigger is the underlying group, the bigger are the
Spencer bundles while, on the contrary, the smaller are the Janet bundles depending on the
invariants of the group action (deformation tensor in classical elasticity is a good example).
Precisely, as already noticed in Theorem 7.2, if G ⊂ Ĝ, the Spencer sequence for G is contained
into the Spencer sequence for Ĝ while the Janet sequence for G projects onto the Janet sequence
for Ĝ, the best picture for understanding such a phenomenon is that of two children sitting on the ends
of a beam and playing at see-saw.

Such a confusion is also combined with another one well described in ([40], p 631) by the
chinese saying "To put Chang’s cap on Li’s head", namely to relate the Ricci tensor (usually
obtained from the Riemann tensor by contraction of indices) to the energy-momentum tensor
(space-time stress), without taking into account the previous confusion relating the gauge
curvature to rotations only while the (classical and Cosserat) stress has only to do with
translations. In addition, it must be noticed that the Cosserat and Maxwell equations can be
parametrized while the Einstein equations cannot be parametrized ([29]).

In order to escape from this dilemna, let us denote by B2(gq), Z2(gq) and H2(gq) =

Z2(gq)/B2(gq) the coboundary (image of the left δ), cocycle (kernel of the right δ) and

cohomology bundles of the δ-sequence T∗ ⊗ gq+1
δ→ ∧2T∗ ⊗ gq

δ→ ∧3T∗ ⊗ Sq−1T∗ ⊗ T.
It can be proved that the order of the generating CC of a formally integrable operator of
order q is equal to s + 1 when s is the smallest integer such that H2(gq+r) = 0, ∀r ≥ s
([26]). As an example with n = 3, we let the reader prove that the second order systems
y33 = 0, y23 − y11 = 0, y22 = 0 and y33 − y11 = 0, y23 = 0, y22 − y11 = 0 have both three
second order generating CC ([30]). For the Killing system R1 ⊂ J1(T) with symbol g1, we
have F0 = J1(T)/R1 = T∗ ⊗ T/g1 and the short exact sequence 0 → g1 → T∗ ⊗ T → F0 → 0.
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As q = 1 and g2 = 0 ⇒ g3 = 0 we have s = 1 and no CC of order 1. The generating CC of
order 2 only depend on F1 = ω−1(F1) according to section 2 where F1 is now defined by the
following commutative diagram with exact columns but the first on the left and exact rows:

0 0 0
↓ ↓ ↓

0 → g3 → S3T∗ ⊗ T → S2T∗ ⊗ F0 → F1 → 0
↓ δ ↓ δ ↓ δ

0 → T∗ ⊗ g2 → T∗ ⊗ S2T∗ ⊗ T → T∗ ⊗ T∗ ⊗ F0 → 0
↓ δ ↓ δ ↓ δ

0 → ∧2T∗ ⊗ g1 → ∧2T∗ ⊗ T∗ ⊗ T → ∧2T∗ ⊗ F0 → 0
↓ δ ↓ δ ↓

0 → ∧3T∗ ⊗ T = ∧3T∗ ⊗ T → 0
↓ ↓
0 0

It follows from a chase([26], p 55)([27], p 192)([32], p 171) that there is a short exact connecting
sequence 0 → B2(g1) → Z2(g1) → F1 → 0 leading to an isomorphism F1 � H2(g1). The
Riemann tensor is thus a section of Riemann = F1 = H2(g1) = Z2(g1) in the Killing case with
dim(Riemann) = (n2(n + 1)2/4)− (n2(n + 1)(n + 2)/6) = (n2(n− 1)2/4)− (n2(n− 1)(n−
2)/6) = n2(n2 − 1)/12 by using either the upper row or the left column and we find back the
two algebraic properties of the Riemann tensor without using indices.
However, for the conformal Killing system, we still have q = 1 but the situation is much more
delicate because g3 = 0 for n ≥ 3 and H2(ĝ2) = 0 only for n ≥ 4 ([26], p 435). Hence, setting
similarly F̂0 = T∗ ⊗ T/ĝ1, the Weyl tensor is a section of Weyl = F̂1 = H2(ĝ1) 	= Z2(ĝ1).
The inclusion g1 ⊂ ĝ1 and the relations g2 = 0, ĝ3 = 0 finally induce the following crucial
commutative and exact diagram (2) ([25], p 430):

0
↓

0 Ricci
↓ ↓

0 → Z2(g1) → Riemann → 0
↓ ↓ ↓ JANET

0 → T∗ ⊗ ĝ2
δ→ Z2(ĝ1) → Weyl → 0

↓ ↓ ↓
0 → S2T∗ δ→ T∗ ⊗ T∗ δ→ ∧2T∗ → 0

↓ ↓
0 0

SPENCER

A diagonal chase allows to identify Ricci with S2T∗ without contracting indices and provides the
splitting of T∗ ⊗ T∗ into S2T∗ (gravitation) and ∧2T∗ (electromagnetism) in the lower horizontal
sequence obtained by using the Spencer sequence, solving thus an old conjecture. However, T∗ ⊗
T∗ � T∗ ⊗ ĝ2 has only to do with second order jets (elations) and not a word is left from the
standard approach to GR. In addition, we obtain the following important theorem explaining
for the first time classical results in an intrinsic way:
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Theorem 7.4. There exist canonical splittings of the various δ-maps appearing in the above diagram
which allow to split the vertical short exact sequence on the right.

Proof. We recall first that a short exact sequence 0 → M′ f→ M
g→ M” → 0 of modules splits,

that is M � M′ ⊕M”, if and only if there exists a map u : M → M′ with u ◦ f = idM′ or a map
v : M” → M with g ◦ v = idM” ([3], p 73)([32], p 33). Hence, starting with (τk

li,j) ∈ T∗ ⊗ ĝ2,

we may introduce (ρk
l,ij = τk

li,j − τk
lj,i) ∈ B2(ĝ1) ⊂ Z2(ĝ1) ⊂ ∧2T∗ ⊗ ĝ1 but now ϕij = ρr

r,ij =

τr
ri,j − τr

rj,i = ρij − ρji 	= 0 with ρij = ρr
i,rj because we have ρk

l,ij + ρk
i,jl + ρk

j,li = 0. With

τ = ωijτr
ri,j and ρ = ωijρij, we obtain (n− 2)τr

ri,j = (n− 1)ρij + ρji− (n/2(n− 1))ωijρ and thus
nρ = 2(n− 1)τ. The lower sequence splits with ϕij → τij = τr

ri,j = (1/2)ϕij → τij − τji = ϕij

and ρij = ρji ⇔ ϕij = 0 in Z2(g1) ⊂ ∧2T∗ ⊗ g1. It follows from a chase that the kernel of the
canonical projection Riemann → Weyl is defined by ρk

l,ij = τk
li,j − τk

lj,i with (ρk
l,ij) ∈ Z2(g1) ⊂

Z2(ĝ1) and (τk
li,j) ∈ T∗ ⊗ ĝ2. Accordingly (n− 2)τij = nρij − (n/2(n− 1))ωijρ provides the

isomorphism Ricci � S2T∗ and we get nρk
l,ij = δk

i τl j − δk
j τli + ωl jω

ksτsi −ωliω
ksτsj, that is:

ρk
l,ij =

1
(n− 2)

(δk
i ρl j − δk

j ρli + ωl jω
ksρsi −ωliω

ksρsj)− 1
(n− 1)(n− 2)

(δk
i ωl j − δk

j ωli)ρ

We check that ρr
i,rj = ρij, obtaining therefore a splitting of the right vertical sequence in the

last diagram that allows to define the Weyl tensor by difference. These purely algebraic results
only depend on ω independently of any conformal factor.

Example 7.3. The free movement of a body in a constant static gravitational field�g is described by d�x
dt −

�v = 0, d�v
dt −�g = 0, ∂�g

∂xi − 0 = 0 where the "speed" is considered as a first order jet (Lorentz rotation)
and the "gravity" as a second order jet (elation). Hence an accelerometer merely helps measuring the
part of the Spencer operator dealing with second order jets (equivalence principle). As a byproduct,
the difference ∂4 f k

4 − f k
44 under the constraint ∂4 f k − f k

4 identifying the "speed" with a first order jet
allows to provide a modern version of the Gauss principle of least constraint where the extremum is now
obtained with respect to the second order jets and not with respect to the "acceleration" as usual ([1],
p 470). The corresponding infinitesimal variational principle δ

∫
(ρ(∂4ξ4 − ξ4

4) + gi(∂iξ
r
r − ξr

ri) +

gij(∂iξ
r
rj − 0))dx = 0 provides the Poisson law of gravitation with ρ = cst and �g = (gi) when

gij = λωij ⇒ gi = −∂iλ. The last term of this gravitational action in vacuum is thus of the form
λdiv(A), that is exactly the term responsible for the Lorentz constraint in Remark 7.6.

8. Conclusion

In continuum mechanics, the classical approach is based on differential invariants and only
involves derivatives of finite transformations. Accordingly, the corresponding variational
calculus can only describe forces as it only involves translations. It has been the idea of E. and
F. Cosserat to change drastically this point of view by considering a new differential geometric
tool, now called Spencer sequence, and a corresponding variational calculus involving both
translations and rotations in order to describe torsors, that is both forces and couples.

About at the same time, H. Weyl tried to describe electromagnetism and gravitation by
using, in a similar but complementary way, the dilatation and elations of the conformal group of
space-time. We have shown that the underlying Spencer sequence has additional terms, not
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known today, wich explain in a unique way all the above results and the resulting field-matter
couplings.

In gauge theory, the structure of electromagnetism is coming from the unitary group U(1),
the unit circle in the complex plane, which is not acting on space-time, as the only possibility
to obtain a pure 2-form from ∧2T∗ ⊗ G is to have dim(G) = 1. However, we have explained
the structure of electromagnetism from that of the conformal group of space-time, with a shift
by one step in the interpretation of the Spencer sequence involved because the "fields" are now
sections of C1 � T∗ ⊗ G parametrized by D1 and thus killed by D2.

In general relativity, we have similarly proved that the standard way of introducing
the Ricci tensor was based on a double confusion between the Janet and Spencer sequences
described by diagrams (1) and (2). In particular we have explained why the intrinsic structure
of this tensor necessarily depends on the difference existing between the Weyl group and the
conformal group which is coming from second order jets, relating for the first time on equal
footing electromagnetism and gravitation to the Spencer δ-cohomology of various symbols.

Accordingly, paraphrasing W. Shakespeare, we may say:

" TO ACT OR NOT TO ACT, THAT IS THE QUESTION "

and hope future will fast give an answer !.
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1. Introduction 

Nature creates all kinds of miraculous similar phenomena in the real world. For example, 
the spiral morphologies exist in nebula, sunflower seed array, grapevine, and DNA. There 
are also a lot of similarities in physical theories and principles, such as the analogy between 
a harmonic vibration system and an RLC oscillation circuit, between a membrane and a 
sand-heap in elasticity and plasticity, and between fluid mechanics and electricity or 
magnetism. The great scientist Maxwell pointed out that the form of the capillary surface is 
identical with that of the elastic curve, which was later tested by the experiment of Clanet 
and Quere (2002), and then was analyzed by Liu in detail (2009). Exploring these similarities 
and analogies can help us understand the underlining secret of nature, and pave the way to 
incorporate several similar phenomena into a unified analysis frame.  

For this study, we mainly focus on the similarity in the adhesion of materials and devices at 
micro and nano scales, which may be caused by van der Waals force, Casimir force, 
capillary force or other interaction forces. Among others, the adhesion of a slender structure 
as micro-beam or carbon nanotube (CNT) is of great value for both theoretical and practical 
aspects. In these systems, due to considerable surface to volume ratio in low-dimensional 
micro/nano-systems, surface tension or interfacial energy will dominate over the volume 
force as their dimensions shrink to micro/nano-meters, which presents a lot of novel 
behaviors distinct with those of the macroscopic systems (Poncharal, et al., 1999). The 
typical phenomenon is stiction of the micro-beams, such as the micro/nano-wires and 
micro/nano-belts which are widely used as building blocks of micro-sensors, resonators, 
probes, transistors and actuators in M/NMES (micro/nano-electro-mechanical systems). In 
micro-contact printing technology, adhesion associated with van der Waals force leads to 
stamp deformation (Hui, et al., 2002), and the micro-machined MEMS structures will 
spontaneously adhere on the substrate under the influence of solid surface energy or liquid 
surface tension (Zhao, et al., 2003). This failure due to stiction has become a major limitation 
to push the better application of these novel engineering devices, and the problem has been 
highlighted as a hot topic in the past decades. The main reason of stiction is that in the small 
spacings, the slender structures with high compliance are easily brought into contact with 
the substrate of strong surface energy.  

Another related issue is the self-collapse of a single wall carbon nanotube (SWCNT), in 
which process its initially circular cross-section will jump to a flat ribbon like shape. The 
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reason lies in that CNTs capture the characteristic of hollow cylindrical structures, which 
render them susceptible to lateral deformation. In reality, this morphology was first 
observed and explored by transmission electron microscopy (TEM) (Ruoff, et al., 1993; 
Chopra, et al., 1995) and then by AFM (Martel, et al., 1998; Yu, et al., 2000). To date, much 
effort has been devoted towards understanding the mechanism of CNT collapse. Gao et al. 
(1998) used molecular dynamic (MD) simulations to discover that there are two possible 
configurations for a CNT in equilibrium state, i.e. the circular one and the collapsed one. For 
nanotubes with radius in the range of R<Rmin, only the circular configuration exits. When 
the radius satisfies Rmin<R<Rmax, both of the shapes exist, and the collapsed tube is in a 
metastable state. For the radius R>Rmax, the collapsed configuration is energetically 
favorable and thermodynamically stable. Their results also exhibited that the critical radii 
are insensitive to the chirality of the tube, and the values of the critical radii are Rmin  1.1 
nm and Rmax  3 nm. Subsequently, Pantano et al. (2004) adopted a continuum approach and 
finite element method to investigate the morphology of the collapsed CNTs. In succession, 
Tang et al. studied the collapse of nanotubes using an inextensible elastica model. In use of 
phase plane analysis, they showed that CNTs can take collapsed configurations of different 
orders (Tang and Glassmaker, 2010). Recently, they investigated the energetics of self-
collapse of a single CNT by using the continuum mechanics method, and calculated the 
critical radii Rmin  0.699 nm and Rmax  0.976 nm (Tang, et al., 2005b). This significant 
difference from the result of Gao et al. is because a distinct force field and physical 
parameters were selected, which greatly affect the results of analytical solutions and 
molecular simulations. However, Liu et al. (2004) performed simulations on the formation of 
fully collapsed SWCNTs with the atomic scale finite element method, and proposed that for 
armchair SWCNTs, collapse occurs for the critical radius (for n=30) is Rmax  2.06 nm, which 
is also different from the aforementioned results. In fact, this value of critical radius of 2.06 
nm was verified by TEM observations, which demonstrated that there exists a collapsed 
SWCNT of 2.5 nm in radius (Xiao, et al., 2007). In spite of the above cited studies on the 
collapse of CNTs, there are hitherto no analytical solution for the collapse problem of CNTs, 
which involves large deformation and strong geometric nonlinearity.  

Although belonging to different phenomena, we strongly stress that, the adhesion of micro-
beams and collapse of SWCNT can be actually incorporated into a unified analysis frame. 
Based upon this frame, we can easily calculate the parameters of adhesion for different 
systems. The outline of this article is organized as follows. In Section 2, we established the 
formulations of energy functional, and derived the governing equation and transversality 
condition in consideration of the moving boundary. In Section 3, in use of the constructed 
frame, we obtained the critical adhesion length of two micro-beams stuck by a thin liquid 
film, and the deflections of the beams. In Section 4, we calculated the critical radii and 
collapsed shapes of SWCNTs via the classical elastica solution, which was derived from the 
energy functional.  

2. Energy functional and transversality condition  

We first provide the analysis of the scaling law of a system with different energy 
originations. The typical length of the slender structure is denoted as Lc , then the interfacial 
or surface energy US  Lc, the elastic strain energy UE

2
cL , and the potential energy due to 

gravity UG
3
cL  (Roman and Bico, 2010). As the dimension of a macroscopic structure 
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shrinks to nanometers, the effect of surface energy will become significant and should be 
taken into account. In this study, we assume that the gravity effect is negligible, for the 
interplay between the surface energy and elasticity is predominant. 

Let us consider a generalized elastic system denoted by a continuous and smooth curve, 
where part of the curve is adhered by some special interfacial forces. The position of an 
arbitrary point in the curve is schematized by the arc length s, the total length of the curve is 
L, and the segment length dealing with the elastic deformation is a. The kernel problem is 
how to determine the unknown length a in the equilibrium state according to the principle 
of least potential energy.  

The functional of the total potential energy about the system is normally written as:  

   0, d da L
E aay x a U x W x      , (1) 

where the first term in the right side of Eq. (1) is strain energy, 

UE=      , , , , , ,F x y x a y x a y x a    , and the symbols    
x

 


,    2

2x

 


.  

The second term in the right side of Eq. (1) is named as the work of adhesion between two 
surfaces, which is normally expressed as (Tang, et al., 2005a) 

  1 2 12aW b     , (2) 

where b is the contact width out of the curve, 1  and 2  are the surface energies of the two 
different phases, and 12  the interfacial energy. In the conventional definition, the work of 
adhesion is actually the work per unit area necessary to create two new surfaces from a unit 
area of an adhered interface, which is a positive constant for any two homogeneous 
materials binding at an interface at a fixed temperature. For the two phases are of the same 
material, the work of adhesion degenerates to the cohesive work 

 12cW b . (3) 

At micro and nano scales, the cohesive work is normally termed as the binding energy EB. 
Furthermore, for the interface consisting of a thin liquid film, the expression of the cohesive 
work is (Bico, et al., 2004) 

  SV SL2cW b   = Y2 cos b  , (4) 

where SV , SL ,   are the interfacial tensions of solid/vapor, solid/liquid and 
liquid/vapor interfaces, respectively, with Y  being the Young’s contact angle of the liquid. 
In the above derivation, the Young’s equation is employed. 

We should mention that, the energy functional of Eq. (1) actually includes two variables, 
namely, the function y and a, because a is yet an unknown when solving the governing 
equation. This results to an intractable problem, for the undetermined variable a causes the 
bound movement of the system, which should be considered as a movable boundary 
condition problem during variation process. Therefore, in use of the principle of least 
potential energy, one obtains the following variational result  
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   1 2, 0y x a          , (5) 

where  

 1 0 da
y y yF y F y F y x          

(6)
2

0 2
0

d
a

a
y y y y y yF y F y F y F F F y x

x x x
       

                  
. 

For the other portion of variation, in consideration of the moving boundary at s=a, we then 
focus on the transversality condition in mathematical meaning, and show how to derive its 
expression. We first revisit the derivative definition about an integration including a 
parameter  . Let  

     
  , db

a F x x
    , (7) 

and then we have its derivative 

     
         , d , ,b

a F x x F b b F a a
                     . (8) 

Similarly, considering the moving boundary at s=a, we can obtain the second part of 
variation on the functional in Eq. (1), that is  

 2

d

d
y

y y
x a

F
F y F y F y W a

x
 

 


 
        

 
. (9) 

In the above derivations, the partial derivative of the function F is designated as    
F

F





. 

The forced or fixed boundary conditions are normally prescribed as 

 y(0)=y0,   00y y  ; y(a)=ya,   ay a y  . (10) 

Inserting Eq. (6) and (9) into (5), and according to the arbitrariness of the variation, one can 
get the governing differential equation, i.e. the Euler-Poisson equation:  

 
2

2 0y y yF F F
x x

 
 

  
 

. (11) 

Besides the above equation, the arbitrariness of variation about a leads to  

 
d

d
y

a y y
x a

F
W y F y F y F

x


 


 
      

 
. (12) 

In fact, the concept of energy release rate or J integral was also adopted to investigate the 
problem of moving boundary (Tang et al., 2005a, 2005b). However, the exact solution of the 
energy release rate is often impossible to acquire, as a result, one can avoid this way and 
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apply the transversality condition to determine the unknown a. This thought paves a new 
way to solve this kind of problems dealing with movable boundary. In addition, the 
transversality condition is essential to calculate the contact angle of a droplet, the 
morphology of a cell, and the peeling of a CNT from the substrate (Oyharcalbal and Frisch, 
2005; Bormasshenko and Whyman, 2008; Seifert, 1990). We will then put to use this method 
to analyze some practical topics, and the adhesion of two micro-beams and the collapsed 
shape of a single wall carbon nanotube (SWCNT) are selected as study cases.  

3. Adhesion of two micro-beams 

Let us consider two identical micro-beams with the same Young’s modulus E, and moment 
of inertia on the cross section I, which are stuck together by the interfacial energy Wa (or 
work of adhesion) due to a thin liquid film. The cross section of the beam is a rectangle, with 
the width b, and thickness e, then I=be3/12. Refer to a Cartesian coordinate system (o-xy). As 
shown in Fig. 1, the distance between the ends of the two beams is d, the detached segment 
length is Ldry, the adhered part is Lwet, and the total length of the beam is L.  

d

dryL wetL

L

x

y

o
A

/A

/A A

Liquid

b

e

 
Fig. 1. Capillary adhesion of two beams with rectangular cross-sections. 

According to Eqs. (1) and (4), the total potential energy of the two beam system can be easily 
expressed as (Bico, et al., 2004; Liu and Feng, 2007a) 

  dry 2
Y dry0 d 2 cos

L
EI w x L L     . (13) 

In use of Eqs. (11) and (12), one can deduce the governing equation  

 w(4) =0, (14) 

and the transversality condition at the moving bound  

  2
Y dry2 cos b EIw L   . (15) 

The fixed boundary conditions of a single beam are specified as 
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 w(0)=d/2,  0 0w  ; w(Ldry)=0,  dry 0w L  , (16) 

Then the corresponding solution of Eq. (14) is written as  

 3 2
3 2
dry dry

3
22

d d d
w x x

L L
   . (17) 

The combination of Eq. (15) and (17) yields 

 
3 2

4dry
Y

3
8 cos

Ee d
L

 
 . (18) 

If the total length of the beam L< dryL  or dry dry 1L L L  , the adhesion energy induced by 
the introduction of a liquid film between the two beams is insufficient to provide the strain 
energy of deformation, and therefore, the two beams will not adhere. On the contrary, if 

dry 1L  , the surface energy is larger than the strain energy, and then the adhesion of the 
two beams is possible.  

Equation (18) also requires that the contact angle Y  must satisfy 0 2Y   , that is, the 
beams must be hydrophilic. In other words, capillary adhesion cannot happen between two 
hydrophobic hairs. The critical length Ldry for capillary adhesion of two beams increases with 
the decreasing of the surface tension and the Young’s contact angle Y  in the range of 
0 2Y   , and with the increasing of the end distance d of the two beams. In addition, the 
deflection diagrams of the two beams can be determined easily from Eq. (17) and are plotted in 
Fig. 2 for several representative values of the interbeam spacing, d＝0.5, 1.0 and 2.0 mm, where 
we take the following parameters: EI/b= 45.1 10  N m , Y 10    and 372 10    N/m. 
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Fig. 2. Deflections of two adhered micro-beams by the liquid film. 
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4. Collapsed morphology of a SWCNT 

We then put to use our analysis frame to examine the collapsed morphology of a SWCNT, 
which is initially circular with a radius R and an axial length L. The current configuration 
incorporates a flat contact zone in the middle part and two non-contact regions at the ends, 
as shown in Fig. 3. In essence, this configuration is stabilized by the van der Waals interplay 
between the upper and lower portion of the CNT walls, primarily within the horizontal 
contact zone, because the van der Waals force decays rapidly in the non-contact areas. As a 
reasonable simplification, the van der Waals force between the upper and lower portion of 
the CNT walls in the non-contact domain is ignored in our calculation. Normally, the van 
der Waals force between two carbon atoms is repulsive at a very close range, so the CNT 
wall contact is defined by an equilibrium separation d0 between the flat regions. The 
distance between the flat contact zone and the extreme point of the CNT is denoted as b. 
From the experimental picture, we can see that the collapsed shape of CNT is symmetric, 
which was also verified by the molecular simulations (Tang, et al. 2005b).  

R

0d

a b
 

Fig. 3. Carbon nanotubes with a circular shape of the radius R, and with a collapsed shape. 
The semi-width of the flat contact zone of the collapsed CNT is a, and the separation 
distance is d0.  

Due to the symmetry and smoothness of this configuration, a quarter of the structure is 
selected and then modeled as a plate or an elastica with two clamped ends, as schematized 
in Fig. 4. This famous elastica theory, which can be traced back to the historic contribution of 
Euler (Love, 1906), has been successfully used to solve some finite deformation problems of 
slender structures (Bishopp, 1945; Liu and Feng, 2007a; Glassmaker and Hui, 2004).  
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O s a π 2s R



 
Fig. 4. Elastica model for a quarter of the CNT, with the arc length s and slope angle   
ranging from 0 to 90  . 

In fact, there is another underling assumption that, the deformation along the axis of the 
nanotube is uniform, which has already been verified by experiments and MD simulations 
(Ruoff, et al. 1993; Chopra, et al., 1995; Pantano, 2004; Tang, et al., 2005b). As a result, we 
select the cross section representing the whole tube, and model the thin wall as a curvilinear 
abscissa. The total in-plane length of the elastica is thus R /2, and the adhered segment is 
a. Refer to a Cartesian coordinate system (o-xy). Besides the Euler coordinate x and y, the arc 
length s, being a Lagrange coordinate, is also employed as a variable in our analysis. The 
slope angle of the elastica at an arbitrary point is  , which continuously changes from 0  at 
its left end to 90   at the right end. The bending stiffness of the elastica is EI, where I is the 
inertial moment of the cross section, and  21E E   , with E  being the Young’s modulus 
and   the Poisson’s ratio of the material.  

According to the elastica model of Fig. 4, the fixed displacement boundary conditions of the 
system are specified as 

   0a  , 
2 2
R      

 
,  R a     ; y(a)=0, 0

2 2
dR

y
    
 

. (19) 

The additional geometric conditions of the elastica are 

 cosx  , siny  , (20) 

where the dot above a parameter stands for its derivative with respect to the arc length s. In 
consideration of the symmetry of this configuration, the total potential energy functional of 
the system can be written as 

    2 2
1 22 cos sin 2R

caL EI x y ds W aL              
   , (21) 

where 1  and 2  are two Lagrange multipliers, enforcing the additionally geometrical 
relations of Eq. (20).  

To deduce the expression of the cohesive work, we choose the van der Waals potential as 
(Tang, et al., 2005a) 
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  
6 9* *

3 2
r r

V r
r r


                 

, (22) 

where  =0.064 kcal/mol, *r =0.401 nm, and r is the distance between two atoms. In this 
case, the cohesive work is the work per unit area to separate the two parallel graphite sheets 
from d to  , which can be calculated via integration of Eq. (22): 

  
   6 9* *

2
4 7

3 4

2 7

r r
W d

d d
 

 
   
  

, (23) 

where   is the number of carbon atoms per unit area, with the value of   0.004 nm–2. In 
the experiment (Ruoff, et al. 1993), the equilibrium distance is measured as d0=0.338 nm, and 
the corresponding cohesive work is calculated as Wc=0.388627 J/m2 according to Eq. (23). 

Taking variation of the potential energy functional of Eq. (21), and in use of the principle of 
least potential energy, one has 

 1 2 0        , (24) 

where  

    2
1 1 22 2 cos sinR

aL EI x y           
   

 1 1 2 2sin cos dx y s           

    2
1 22 2 cos sinR

aL EI x y           
  

 1 2sin cos ds    
2

1 22 2
R

a
L EI x y


        


    2
1 22 cos sinR

aL x y          

  1 22 sin cos dEI s        


12L a  .

(25)

In the above derivations, Eqs. (19) and (20) have been adopted. 

Considering the moving boundary, the second part of the variation is expressed as 

     2
2 1 2 1 22 cos sin 2

s a
L EI x y EI x y a          


           

       

2 cW L a  

 2
12 cL EI a W a      

 . 

(26)



 
Continuum Mechanics – Progress in Fundamentals and Engineering Applications 

 

42

Noticing the arbitrariness of the variation, one obtains the following governing equation 

 1 22 sin cos 0EI       , (27) 

where the Lagrange multipliers 1  and 2  can be easily identified as the horizontal and 
vertical internal forces in the elastica. The governing equation in Eq. (27) conforms to that 
derived by Tang et al. (Tang and Glassmaker, 2010), who adopted the method of force 
equilibrium. 

Combination of Eqs. (24) and (26) leads to the additional boundary condition at the moving 
point 

  2 0cEI a W   , (28) 

which is termed as the transversality condition. This additional condition represents the 
balance of the elastic strain energy and the van der Waals potential energy. It is worthy of 
being mentioned that the movable boundary condition in Eq. (28) can also be deduced via 
the concept of J integral in fracture mechanics, as described by Glassmaker and Hui (2004) in 
their analysis of silicon–germanium nanotube formation. 

Multiplying   to both sides of Eq. (27) and by integration, one has 

 2
1 2cos sinEI D       , (29) 

where D is an integration constant. Making use of Eq. (19), one obtains 

  2EI a D  . (30) 

It is noticed that the symmetry of the configuration verifies the relation of 
   2 2πa R a    =D. 

Inserting Eq. (28) into (30), one has 

 D=Wc. (31) 

Introducing the parameter C and  2 2EI  , we can obtain  2 2C D EI  . Thus the 
governing equation (29) and transversality condition (30) are respectively transformed into  

  2 21
sin

2
C    , (32) 

  2 21
2

a C  . (33) 

The combination of Eqs. (30) and (33) yields  

 
1

2ecL C
  . (34) 
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Here, we have defined a new characteristic length, i.e. the elasto-cohesive length Lec 
= cEI W , which is different from the elasto-capillary length LEC named by Bico et al. (2004) 

and Roman (2010). For a slender structure adhered by a liquid film, the elasto-cohesive 

length Lec=
2

2
LEC when Y 0  . It is seen that in this case, Eqs. (30) and (34) are consistent 

with the results in the reference (Bico, et al., 2004).  

Note that the arc increment ds is always positive and the increasing of the slope angle is not 
monotonic, and Eq. (32) is simplified as  

 
 

d
d

2 sin
s

C








. (35) 

For convenience of integration, the variable   should be replaced with another variable  . 
These two variables are related by 

   2 2 21 sin 2 sin 1 sinC k        0 ,   0k    , (36) 

and 

  2 sin 2 cosC k   , (37) 

 
2 2

2 cos
d d

1 sin

k

k


 





, (38) 

 
  2 2

d d

2 sin 1 sinC k

 
 


 

. (39) 

Substituting Eqs. (34–39) into the prescribed displacement boundary condition in Eq. (19) 
leads to  
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2 2 sin
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y
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  

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 (40)

       0 0, , 2 , ,F k F k E k E k        
0

22 4 2 ec

d

k L
 


, 

where  0sin 1 / 2k  ,  ,F k   and  ,E k   are the elliptic integrals of the first and second 
kinds, which are respectively defined as 
 

  0 2 2

1
, d

1 sin
F k

k

 


 


, 

 (41)

  2 2
0, 1 sin dE k k    . 
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To close this mathematical formulation of the above problem, we then complement the 
inextensible condition of the elastic rod (Bishopp and Drucker, 1945), which is written as 
 

2

2
R

a
R

a ds     
 

 

 (42)

 
2

0
d

2 sinC

 




 


   0, ,F k F k   . 

From Eq. (40), one can solve the corresponding values of k=0.82 for the given value of d0. 
Then the substitution of Eq. (34) into (42) yields 
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For a CNT with an initial radius R=3 nm, the analytical result of Eq. (43) is presented as 
0.317854, which is nearly equal to the approximated solution given by Tang et al. (2005b) is 
     0π 3.035 πeca R d L R  +0.5=0.30485.  

After the flat contact length a has been solved by Eq. (43), the deflection of the rod can be 
determined by 

 0 cos dsx s    24 2 2 cosa k k     , (44) 

 0 sin dsy s           0 0, , 2 , ,F k F k E k E k         . (45) 

The above displacements normalized by the elasto-cohesive length read  
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Fig. 5. Cross-section shapes of CNTs with initial radii of 2, 3 and 4 nm, respectively. 
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where x =x/Lec, y =y/Lec, and R =R/Lec. 

Finally, the morphologies of three representative collapsed CNTs with R=2, 3 and 4 nm are 
plotted in Fig. 5, where the parameters are the same as those in Fig. 3. It can be seen that, 
with increasing radius, the flat contact zone becomes larger, but the right ended shape does 
not change too much. Therefore, in the current calculation, the bending stiffness EI is selected 
as 2 10–19 N m , and the corresponding elasto-cohesive length Lec= EI W =0.72 nm. 

5. Conclusions 

In this study, we demonstrated that a lot of problems dealing with the moving boundaries can 
be grouped into a unified frame, such as the adhesion of micro-beams and collapse of SWCNT. 
We first constructed the energy functional of the general system, then derived the governing 
equation and the transversality condition. We put this analysis method to solve the critical 
length and deflections of two micro-beams. Moreover, we derived the governing equation, i.e., 
the elastica model of the collapsed morphology for the SWCNT. Under the inextensible 
condition of the rod, the closed-form solutions for the flat contact segment, critical radii, and 
collapsed configuration were obtained in terms of elliptical integrals. It is clearly shown that 
our analytical solutions are in good agreement with the results of the references.  

This analysis method paves a new way to examine nano-scaled mechanics by means of 
continuum mechanics. The presented results are also beneficial to design and fabricate new 
devices, micro-sensors and advanced materials in micro/nano scale, which casts a light on 
enhancing their mechanical, chemical, optical and electronic properties. Furthermore, this 
model can be generalized to investigate both a macroscopic sheet wrapped by a liquid film 
and a CNT self-folded by van der Waals forces, and can be adopted to analyze the crack or 
contact problems. 
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1. Introduction 

A non-Newtonian fluid is a fluid whose flow properties differ in many ways from those of 
Newtonian fluids. Most commonly the viscosity of non-Newtonian fluids is not independent 
of shear rate or shear rate history. In practice, many fluid materials exhibits non-Newtonian 
fluid behavior such as: salt solutions, molten, ketchup, custard, toothpaste, starch suspensions, 
paint, blood, and shampoo etc. In a Newtonian fluid, the relation between the shear stress and 
the shear rate is linear, passing through the origin, the constant of proportionality being the 
coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the 
shear rate is different, and can even be time-dependent. Therefore a constant coefficient of 
viscosity cannot be defined. In the previous parts of this book, the mechanics of Newtonian 
fluid have been mentioned. In this chapter, the common rheological models of non-Newtonian 
fluids are introduced and several approaches concerned with non-Newtonian fluid flows are 
considered. In addition, the solution of common non-Newtonian fluid flows in a circular pipe, 
annular and rectangular duct are presented. 

2. Classification of non-Newtonian fluid 

As above mentioned, a non-Newtonian fluid is one whose flow curve (shear stress versus 
shear rate) is nonlinear or does not pass through the origin, i.e. where the apparent viscosity, 
shear stress divided by shear rate, is not constant at a given temperature and pressure but is 
dependent on flow conditions such as flow geometry, shear rate, etc. and sometimes even 
on the kinematic history of the fluid element under consideration. Such materials may be 
conveniently grouped into three general classes: 

1. fluids for which the rate of shear at any point is determined only by the value of the 
shear stress at that point at that instant; these fluids are variously known as ‘time 
independent’ , ‘ purely viscous’ , ‘inelastic’ or ‘generalized Newtonian fluids’); 

2. more complex fluids for which the relation between shear stress and shear rate 
depends, in addition, upon the duration of shearing and their kinematic history; they 
are called ‘time-dependent fluids’, and finally, 

3. substances exhibiting characteristics of both ideal fluids and elastic solids and showing 
partial elastic recovery, after deformation; these are categorized as ‘viscoplastic fluids’.  

Among the three groups, the time independent Non-Newtonian fluids are the most popular 
and easiest to handle in analysis. In this chapter, only this group of Non-Newtonian fluids 
are considered. 
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Fig. 1. Types of time-independent non-Newtonian fluid 

In simple shear, the flow behaviour of this class of materials may be described by the 
following constitutive relation, 

 ( )yx yxf    (1) 

This equation implies that the value of yx  at any point within the sheared fluid is 
determined only by the current value of shear stress at that point or vice versa. Depending 
upon the form of the function in equation (1), these fluids may be further subdivided into 
three types: shear-thinning or pseudoplastic, shear-thickening or dilatant and viscoplastic 

2.1 Shear-thinning or pseudo-plastic fluids 

The most common type of time-independent non-Newtonian fluid behaviour observed is 
Pseudo-plasticity or shear-thinning, characterized by an apparent viscosity which decreases 
with increasing shear rate. Both at very low and at very high shear rates, most shear-
thinning polymer solutions and melts exhibit Newtonian behaviour, i.e., shear stress–shear 
rate plots become straight lines and on a linear scale will pass through origin. The resulting 
values of the apparent viscosity at very low and high shear rates are known as the zero 
shear viscosity, μ0 , and the infinite shear viscosity, μ, respectively. Thus, the apparent 
viscosity of a shear-thinning fluid decreases from μ0 to μ with increasing shear rate. Many 
mathematical expressions of varying complexity and form have been proposed in the 
literature to model shear-thinning characteristics; some of these are straightforward 
attempts at curve fitting, giving empirical relationships for the shear stress (or apparent 
viscosity)–shear rate curves for example, while others have some theoretical basis in 
statistical mechanics – as an extension of the application of the kinetic theory to the liquid 
state or the theory of rate processes, etc. Only a selection of the more widely used viscosity 
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models is given here; more complete descriptions of such models are available in many 
books (Bird et al ., 1987 ; Carreau et al ., 1997) and in a review paper (Bird, 1976). 

i. The power-law model 

The relationship between shear stress and shear rate for this type of fluid can be 
mathematically expressed as follows: 

 ( )n
yx yxK    (2) 

So the apparent viscosity for the so-called power-law fluid is thus given by: 

 1( )n
yxK     (3) 

For n < 1, the fluid exhibits shear-thinning properties 
 n = 1, the fluid shows Newtonian behaviour 
 n > 1, the fluid shows shear-thickening behaviour 

In these equations, K and n are two empirical curve-fitting parameters and are known as the 
fluid consistency coefficient and the flow behaviour index respectively. For a shear thinning 
fluid, the index may have any value between 0 and 1. The smaller the value of n, the greater 
is the degree of shear-thinning. For a shear-thickening fluid, the index n will be greater than 
unity. When n=1, equations (3) becomes the constitutive equation of Newtonian fluid. 

Although the power-law model offers the simplest representation of shear-thinning 
behaviour, it does have a number of limitations. Generally, it applies over only a limited 
range of shear rates and therefore the fitted values of K and n will depend on the range of 
shear rates considered. Furthermore, it does not predict the zero and infinite shear 
viscosities. Finally, it should be noted that the dimensions of the flow consistency 
coefficient, K, depend on the numerical value of n and therefore the K values must not be 
compared when the n values differ. On the other hand, the value of K can be viewed as the 
value of apparent viscosity at the shear rate of unity and will therefore depend on the time 
unit (e.g. second, minute or hour) employed. Despite these limitations, this is perhaps the most 
widely used model in the literature dealing with process engineering applications. Table 1 
provides a compilation of the power-law constants (K and n) for a variety of substances. 

ii. The Carreau viscosity equation 

When there are significant deviations from the power-law model at very high and very low 
shear rates, it is necessary to use a model which takes account of the limiting values of 
viscosities μ0 and μ . Based on the molecular network considerations, Carreau (1972) put 
forward the following viscosity model. 

 ( 1)/22

0

[1 ( ) ] n
yx

  
 






 


  (4) 

where n (< 1) and λ are two curve-fitting parameters. This model can describe shear 
thinning behaviour over wide ranges of shear rates but only at the expense of the added 
complexity of four parameters. This model predicts Newtonian fluid behaviour μ = μ0 when 
either n = 1 or λ =0 or both. 
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System Temperature (K) n M (Pa sn ) 
Agro- and food-related products    
Ammonium alginate solution (3.37%) 297 0.5 13 
Apple butter – 0.15 200 
Apple sauce 300 0.3–0.45 12–22 
Apricot puree 300 0.3–0.4 5–20 
Banana puree 293–315 0.33–0.5 4–10 
Carrot puree 298 0.25 25 
Chicken (minced) 296 0.10 900 
Chocolate 303 0.5 0.7 
Guava puree 296.5 0.5 40 
Human blood 300 0.9 0.004 
Mango pulp 300–340 0.3 3–10 
Marshmallow cream – 0.4 560 
Mayonnaise 298 0.6 5–100 
Papaya puree 300 0.5 10 
Peach puree 300 0.38 1–5 
Peanut butter – 0.07 500 
Pear puree 300 0.4–0.5 1–5 
Plum puree 287 0.35 30–80 
Tomato concentrate (5.8% solid) 305 0.6 0.22 
Tomato ketch up 295 0.24 33 
Tomato paste – 0.5 15 
Whipped desert toppings – 0.12 400 
Yoghurt 293 0.5–0.6 25 
Polymer melts    
High density polyethylene (HDPE) 453–493 0.6 3.75–6.2 x 103 
High impact polystyrene 443–483 0.20 3.5–7.5 x 104 
Polystyrene 463–498 0.25 1.5–4.5 x 104 
Polypropylene 453–473 0.40 4.5–7 x 103 
Low density polyethylene (LDPE) 433–473 0.45 4.3–9.4 x 103 
Nylon 493–508 0.65 1.8–2.6 x 103 
Polymethylmethyacrylate   (PMMA) 493–533 0.25 2.5–9 x 104 
Polycarbonate 553–593 0.65–0.8 1–8.5 x 103 
Personal care products    
Nail polish 298 0.86 750 
Mascara 298 0.24 200 
Toothpaste 298 0.28 120 
Sunscreen lotions 298 0.28 75 
Ponds cold cream 298 0.45 25 
Oil of Olay 298 0.22 25 

Source: Modified after Johnson (1999) 

Table 1. Typical values of power-law constants for a few systems 
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iii. The Cross viscosity equation 

Another four parameter model which has gained wide acceptance is due to Cross (1965) 
which, in simple shear, is written as: 

 
0

1
1 ( )n

yxk
 
  








  
 (5) 

Here n (<1) and k are two fitting parameters whereas μ0 and μ are the limiting values of the 
apparent viscosity at low and high shear rates, respectively. This model reduces to the 
Newtonian fluid behaviour as k → 0. Similarly, when μ << μ0 and μ >>μ, it reduces to the 
familiar power-law model, equation (3). Though initially Cross (1965) suggested that a 
constant value of n =2/3 was adequate to approximate the viscosity data for many systems, 
it is now thought that treating the index, n, as an adjustable parameter offers considerable 
improvement over the use of the constant value of n (Barnes et al. , 1989). 

iv. The Ellis fluid model 

When the deviations from the power-law model are significant only at low shear rates, it 
is more appropriate to use the Ellis model. The three viscosity equations presented so far 
are examples of the form of equation (1). The three-constant Ellis model is an illustration 
of the inverse form. In simple shear, the apparent viscosity of an Ellis model fluid is given 
by: 

 0
1

1/21 ( / )yx



  


 (6) 

In this equation, μ0 is the zero shear viscosity and the remaining two constants α (> 1) and 
τ1/2 are adjustable parameters. While the index α is a measure of the degree of shear thinning 
behaviour (the greater the value of α , greater is the extent of shear-thinning), τ1/2 represents 
the value of shear stress at which the apparent viscosity has dropped to half its zero shear 
value. Equation (6) predicts Newtonian fluid behaviour in the limit of τ 1/2 → . This form 
of equation has advantages in permitting easy calculation of velocity profiles from a known 
stress distribution, but renders the reverse operation tedious and cumbersome. It can easily 
be seen that in the intermediate range of shear stress (or shear rate), (τyx / τ1/2)

-1>> 1, and 
equation (6) reduces to equation (3) with n =(1/) and 1 1/

0 1/2( )m      

2.2 Viscoplastic fluid behaviour 

This type of fluid behaviour is characterized by the existence of a yield stress (τ0) which 
must be exceeded before the fluid will deform or flow. Conversely, such a material will 
deform elastically (or flow en masse like a rigid body) when the externally applied stress is 
smaller than the yield stress. Once the magnitude of the external stress has exceeded the 
value of the yield stress, the flow curve may be linear or non-linear but will not pass 
through origin (Figure 1). Hence, in the absence of surface tension effects, such a material 
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will not level out under gravity to form an absolutely flat free surface. One can, however, 
explain this kind of fluid behaviour by postulating that the substance at rest consists of 
three-dimensional structures of sufficient rigidity to resist any external stress less than τ0. 
For stress levels greater than τ0, however, the structure breaks down and the substance 
behaves like a viscous material. In some cases, the build-up and breakdown of structure has 
been found to be reversible, i.e., the substance may regain its initial value of the yield stress. 

A fluid with a linear flow curve for |τyx | > | τ0 | is called a Bingham plastic fluid and is 
characterized by a constant plastic viscosity (the slope of the shear stress versus shear rate 
curve) and a yield stress. On the other hand, a substance possessing a yield stress as well as 
a non-linear flow curve on linear coordinates (for |τyx| > |τ0|), is called a yield 
pseudoplastic material. It is interesting to note that a viscoplastic material also displays an 
apparent viscosity which decreases with increasing shear rate. At very low shear rates, the 
apparent viscosity is effectively infinite at the instant immediately before the substance 
yields and begins to flow. It is thus possible to regard these materials as possessing a 
particular class of shear-thinning behaviour. 

Strictly speaking, it is virtually impossible to ascertain whether any real material has a 
true yield stress or not, but nevertheless the concept of a yield stress has proved to be 
convenient in practice because some materials closely approximate to this type of flow 
behaviour, e.g. see Barnes and Walters (1985) , Astarita (1990) , Schurz (1990) and Evans 
(1992) . Many workers in this field view the yield stress in terms of the transition from a 
solid-like (high viscosity) to a liquid-like (low viscosity) state which occurs abruptly over 
an extremely narrow range of shear rates or shear stress (Uhlherr et al ., 2005). It is not 
uncommon for the two values of viscosity to differ from each other by several orders of 
magnitude. The answer to the question whether a fluid has a yield stress or not seems to 
be related to the choice of a time scale of observation. Common examples of viscoplastic 
fluid behaviour include particulate suspensions, emulsions, foodstuffs, blood and drilling 
mud, etc. (Barnes, 1999). 

Over the years, many empirical expressions have been proposed as a result of 
straightforward curve-fitting exercises. A model based on sound theory is yet to emerge. 
Three commonly used models for viscoplastic fluids are: Bingham plastic model, Herschel-
Bulkley model and Casson model. 

i. The Bingham plastic model 

This is the simplest equation describing the flow behaviour of a fluid with a yield stress and, 
in steady one-dimensional shear, it is described by 

0 ( )yx yx       for 0yx   

 0yx   for 0yx   (7) 

Often, the two model parameters τ0 and μ are treated as curve-fitting constants irrespective 
of whether or not the fluid possesses a true yield stress. 
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ii. The Herschel-Bulkley fluid model 

A simple generalization of the Bingham plastic model to embrace the non-linear flow curve 
(for τyx > τ0) is the three constant Herschel–Bulkley fluid model. In one dimensional steady 
shearing motion, the model is written as: 

0 ( )n
yx yxK      for 0yx   

 0yx   for 0yx   (8) 

It is again noted that, the dimensions of K depend upon the value of n. With the use of the 
third parameter, this model provides a somewhat better fit to some experimental data. 

iii. The Casson fluid model 

Many foodstuffs and biological materials, especially blood, are well described by this two 
constant model as: 

1/21/2 1/2
0 ( / )yx yx       for 0yx   

 0yx   for 0yx   (9) 

This model has often been used for describing the steady shear stress–shear rate behaviour 
of blood, yoghurt, tomato purée, molten chocolate, etc. The flow behaviour of some 
particulate suspensions also closely approximates to this type of behaviour. The 
comparative performance of these three as well as several other models for viscoplastic 
behaviour has been thoroughly evaluated in an extensive review paper by Bird et al . (1983) 
and a through discussion on the existence, measurement and implications of yield stress has 
been provided by Barnes (1999). 

2.3 Shear-thickening or dilatant fluid behaviour 

Dilatant fluids are similar to pseudoplastic systems in that they show no yield stress but 
their apparent viscosity increases with increasing shear rate; thus these fluids are also called 
shear-thickening. This type of fluid behaviour was originally observed in concentrated 
suspensions and a possible explanation for their dilatant behaviour is as follows: At rest, the 
voidage is minimum and the liquid present is sufficient to fill the void space. At low shear 
rates, the liquid lubricates the motion of each particle past others and the resulting stresses 
are consequently small. At high shear rates, on the other hand, the material expands or 
dilates slightly (as also observed in the transport of sand dunes) so that there is no longer 
sufficient liquid to fill the increased void space and prevent direct solid–solid contacts which 
result in increased friction and higher shear stresses. This mechanism causes the apparent 
viscosity to rise rapidly with increasing rate of shear. The term dilatant has also been used 
for all other fluids which exhibit increasing apparent viscosity with increasing rate of shear. 
Many of these, such as starch pastes, are not true suspensions and show no dilation on 
shearing. The above explanation therefore is not applicable but nevertheless such materials 
are still commonly referred to as dilatant fluids. 
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Of the time-independent fluids, this sub-class has received very little attention; consequently 
very few reliable data are available. Until recently, dilatant fluid behaviour was considered 
to be much less widespread in the chemical and processing industries. However, with the 
recent growing interest in the handling and processing of systems with high solids loadings, 
it is no longer so, as is evidenced by the number of recent review articles on this subject 
(Barnes et al., 1987; Barnes, 1989; Goddard and Bashir, 1990). Typical examples of materials 
exhibiting dilatant behaviour include concentrated suspensions of china clay, titanium 
dioxide (Metzner and Whitlock, 1958) and of corn fl our in water (Griskey et al., 1985). The 
limited information reported so far suggests that the apparent viscosity–shear rate data 
often result in linear plots on double logarithmic coordinates over a limited shear rate range 
and the flow behaviour may be represented by the power-law model, with the flow 
behaviour index, n, greater than unity, i.e., 

 1( )n
xyK     (10) 

One can readily see that for n > 1, equation (10) predicts increasing viscosity with increasing 
shear rate. The dilatant behaviour may be observed in moderately concentrated suspensions 
at high shear rates, and yet, the same suspension may exhibit pseudoplastic behaviour at 
lower shear rates. 

This section is concluded by Table 2 providing a list of materials displaying a spectrum of 
non-Newtonian flow characteristics in diverse applications to reinforce idea yet again of the 
ubiquitous nature of such flow behaviour. 
 

Practical fluid Characteristics Consequence of non-Newtonian behaviour 
Toothpaste Bingham Plastic Stays on brush and behaves more liquid-like 

while brushing 

Drilling muds   Bingham Plastic   Good lubrication properties and ability to 
convey debris  

Non-drip paints  Thixotropic  Thick in the tin, thin on the brush  

Wallpaper paste Pseudoplastic and 
Viscoelastic 

Good spreadability and adhesive properties 

Egg white  Visco-elastic  Easy air dispersion (whipping)  

Molten polymers  Visco-elastic  Thread-forming properties  

‘ Bouncing Putty ’ Visco-elastic Will fl ow if stretched slowly, but will bounce 
(or shatter) if hit sharply 

Wet cement 
aggregates   

Dilatant and 
thixotropic   

Permit tamping operations in which small 
impulses produce almost complete settlement  

Printing inks  Pseudoplastic   Spread easily in high speed machines yet do 
not run excessively at low speeds  

Waxy crude oils Viscoplastic and 
Thixotropic 

Flows readily in a pipe, but difficult to restart 
the flow 

Table 2. Non-Newtonian characteristics of some common materials 



 
Incompressible Non-Newtonian Fluid Flows 

 

55 

3. Rabinowitsch-Mooney equation 

Consider a one-directional flow of fluid through a circular tube with radius R, Figure 2. The 
volumetric flow rate through an annular element of area perpendicular to the flow and of 
width r is given by 

    2 . xQ r r v    (11) 

and, consequently, the flow rate through the whole tube is 

 
0

  2
R

xrv drQ    (12) 

Integrating by parts gives 

 
2 2

00

+  
2 2

  2
i i

r r
x xr v dvr

dr
dr

Q 
       

     
   (13) 

Provided there is no slip at the tube wall, the first term in equation (13) vanishes. Equation 
(13) then can be written as 

  
.

2

0

( )  
R

r drQ     (14) 

If the fluid is time-independent and homogeneous, the shear stress is a function of shear rate 
only. The inverse is that the shear rate  , is a function of shear stress rx  only and the 
variation of rx  with r is known from the following well-known equation: 

  rx

w

r
R




  (15) 

where w  is the wall shear stress.  

Changing variables in equation (14), using equation (15), and dropping the subscripts rx, 
equation (14) can be written as 

 
2 2 3. .

2
2 3

0 0

( )  ( )  
w w

i

ww w

R R
d dQ

      
 

       (16) 

where   is interpreted as a function of  instead of r.  

 
Fig. 2. Geometric presentation of MR fluid in o circular tube 

x
R rdrvx
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Writing equation (16) in terms of the flow characteristic gives 

 
.

2
3 3

0

8 4 4
  = ( )

w

w

u Q
d

D R



  
 

   (17) 

where u is the average velocity of the fluid flow and D is the diameter of the tube. For flow 
in a pipe or tube the shear rate is negative so the integral in equation (17) is positive. For a 
given relationship between   and  , the value of the integral depends only on the value of 

w . Thus, for a non-Newtonian fluid, as well as for a Newtonian fluid, the flow 
characteristic 8u/D is a unique function of the wall shear stress w .  

The shear rate   can be extracted from equation (17) by differentiating with respect to  . 
Moreover, if a definite integral is differentiated w.r.t. the upper limit ( w ), the result is the 
integrand evaluated at the upper limit. It is convenient first to multiply equation (17) by 3

w  
throughout, then differentiating w.r.t. w  gives 

 
.

2 3 28 (8 / )
3  +  = 4 ( )  w w w w

w

u d u D
D d

   


  (18) 

Rearranging equation (18) gives the wall shear rate w  as 

 
8 3 1 (8 / )

 
4 4 (8 / )

w
w

w

u d u D
D u D d




 
   

 
  (19) 

Making use of the relationship dx/x = dlnx, equation (19) can be written as 

 
8 3 1  ln(8 / )

 
4 4  lnw

w

u d u D
D d




 
   

 
  (20) 

As the wall shear rate wN  for a Newtonian fluid in laminar flow is equal to (-8u/D), 
equation (20) can be expressed as 

 
3 1  ln(8 / )
4 4  lnw wN

w

d u D
d

 


 
  

 
   (21) 

Equations (20) and (21) are forms of the Rabinowitsch-Mooney equation. It shows that the 
wall shear rate for a non-Newtonian fluid can be calculated from the value for a Newtonian 
fluid having the same flow rate in the same pipe, the correction factor being the quantity in 
the square brackets. The derivative can be estimated by plotting ln(8u/D) against ln w  and 
measuring the gradient. Alternatively the gradient may be calculated from the (finite) 
differences between values of ln(8du/D) and ln w . Thus the flow curve w  against w  can 
be determined. The measurements required and the calculation procedure are as follows. 

1. Measure Q at various values of /fP L , preferably eliminating end effects. 
2. Calculate   from the pressure drop measurements and the corresponding values of 

the flow characteristic 3(8 / 4 / )du D Q R  from the flow rate measurements. 
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3. Plot ln(8 / )du D  against ln w  and measure the gradient at various points on the curve. 
Alternatively, calculate the gradient from the differences between the successive values 
of these quantities. 

4. Calculate the true wall shear rate from equation (20) with the derivative determined in 
step 3. In general, the plot of ln(8 / )du D  against ln w will not be a straight line and the 
gradient must be evaluated at the appropriate points on the curve. 

Example 1 

The flow rate-pressure drop measurements shown in Table 3 were made in a horizontal 
tube having an internal diameter D = 6 mm, the pressure drop being measured between two 
tapings 2.0m apart. The density of the fluid, , was 870 kg/m3. Determine the wall shear 
stress-flow characteristic curve and the shear stress-true shear rate curve for this material. 
 

Pressure drop 
  (bar) 

Mass flow rate 
x 103 (kg/s) 

0.384 
0.519 
0.716 
0.965 
1.16 
1.29 
1.46 
1.60 

0.0864 
0.463 
1.37 
2.76 
4.13 
5.20 
6.78 
8.15  

Table 3. 

The results are shown in Table 4 
 

 (Pa)  8 /du D  gradient n’ (3n’+1)/4n’ -1
.

(s )  

28.8 
38.9 
53.7 
72.4 
87.0 
96.8 

110 
120 

4.68 
25.1 
74.3 

150 
224 
282 
367 
442 

0.157 
0.232 
0.375 
0.439 
0.475 
0.475 
0.475 
0.475 

2.34 
1.83 
1.42 
1.32 
1.28 
1.28 
1.28 
1.28 

11.0 
45.9 

106 
197 
286 
360 
469 
564 

Table 4 

4. Calculation of flow rate-pressure drop relationship for laminar flow using 
    data 

Flow rate-pressure drop calculations for laminar non-Newtonian flow in pipes may be made 
in various ways depending on the type of flow information available. When the flow data 
are in the form of flow rate and pressure gradient measured in a tubular viscometer or in a 
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pilot scale pipeline, direct scale-up can be done as described in Section 5. When the data are 
in the form of shear stress-shear rate values (tabular or graphical), the flow rate can be 
calculated directly using equation (17), where D is the diameter of the pipe to be used and 

w  is the wall shear stress corresponding to the specified pressure gradient. Whether 
obtained with a rotational instrument or with a tubular viscometer, the data provide the 
relationship between   and  . Numerical evaluation of the integral in equation (17) can be 
done using selected pairs of values of   and   ranging from 0 to w .  

If the    , relationship can be accurately represented by a simple algebraic expression, 
such as the power law, over the required range then this may be used to substitute for  , in 
equation (17), allowing the integral to be evaluated analytically. Both these methods are 
illustrated in the following example. 

Example 2 

Using the viscometric data given in Table 5 calculate the average velocity for the material 
flowing through a pipe of diameter 37mm when the pressure gradient is 1.1kPa/m. 
 

1
.
( )s   ( )Pa  (  s)a Pa  

0.00911 
0.0911 
0.911 
9.111 

91.11 
102.3

0.0417 
0.175 
0.708 
2.82 

11.22 
12.03

4.58 
1.95 
0.777 
0.310 
0.123 
0.118

Table 5. 

Calculations 

The wall shear stress is given by 

    
4w

D P
L

 


-3(37 x 10 m)(1100 Pa/m)
          

4
  10.18 Pa           

the flow characteristic 

.
2

3
0

8 4 ( )
w

w

u d
D



  


   

It is necessary to evaluate the integral from   = 0 to   = 10.18Pa. This can be done by 
calculating 

.
2   for each of the values given in the table and plotting 

.
2   against  . The 

area under the curve between   = 0 and   = 10.18Pa can then be measured. An alternative, 
which will be used here, is to use a numerical method such as Simpson's rule. This requires 
values at equal intervals of  . Dividing the range of integration into six strips and 
interpolating the data allows Table 6 to be constructed. 
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 (Pa)   .
2   

0.00 0.0 0.00 (Centerline) 
1.70 3.91 11.24 
3.39 12.41 142.8 
5.09 24.38 631.0 
6.78 39.39 1812 
8.48 57.14 4108 

10.18 77.43 8016 (pipe wall) 

Table 6. 

By Simpson's rule 

10.18 .
2 3 -1

0

10.18 /6
[0+8016+4(11.24+613+4108)+2(142.8+1812)]=   17490 Pa s  

3
d     

From equation (17) 

-3 3 -1

3
(37 x 10 m)(17490 Pa s )

  = 0.307 m/s       
2(10.18 Pa)

u   

The above is the general method but in this case the viscometric data can be well 
represented by 0.60   0.749   Pa, thus 1.667  1.62  s-1. This allows the integral in equation 
(17) to be evaluated analytically. 

10.18.
2 3.667 3 1

0 0

 = 1.62 17510 d d Pa s


        

This agrees with the value found by numerical integration and would give the same value 
for u. 

Note that the values of the apparent viscosity 0  were not used; they were provided to 
show that the fluid is strongly shear thinning. If the data were available as values of 0  at 
corresponding values of  , then   should be calculated as their product. The table of 
values of 2   (Table 6) illustrates the fact that flow in the centre makes a small contribution 
to the total flow: flow in the outer parts of the pipe is most significant. 

As mentioned previously, the minus sign in equation (17) reflects the fact that the shear rate 
is negative for flow in a pipe. In the above calculations, the absolute values of  , and   
have been used and the minus sign has therefore been dropped. 

5. Wall shear stress-flow characteristic curves and scale-up for laminar flow 

When data are available in the form of the flow rate-pressure gradient relationship obtained 
in a small diameter tube, direct scale-up for flow in larger pipes can be done. It is not 
necessary to determine the  -   curve with the true value of   calculated from the 
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Rabinowitsch-Mooney equation (Equation (20)). Equation (17) shows that the flow 
characteristic is a unique function of the wall shear stress for a particular fluid: 

.
2

3
0

8 4
 ( )

w

w

u
d

D



  


   

In the case of a Newtonian fluid, substituting /     into the above equation and 
evaluating the integral gives 

 
8

 wu
D




  (22) 

Recall that the wall shear rate for a Newtonian fluid in laminar flow in a tube is equal to 
8 /u D . In the case of a non-Newtonian fluid in laminar flow, the flow characteristic is no 

longer equal to the magnitude of the wall shear rate. However, the flow characteristic is still 
related uniquely to w  because the value of the integral, and hence the right hand side of 
equation (17), is determined by the value of w . 

If the fluid flows in two pipes having internal diameters D1 and D2 with the same value of 
the wall shear stress in both pipes, then from equation (17) the values of the flow 
characteristic are equal in both pipes: 

 1 2

1 2

8 8
  

u u
D D

  (23) 

So the average velocities are related by 

 1 1

2 2

   
u D
u D

  (24) 

By substituting for u or by writing the flow characteristic as 34 /Q R , the volumetric flow 
rates are related by 

 
3

1 1

2 2

   
Q D
Q D

 
  

 
 (25) 

It is important to appreciate that the same value of w  requires different values of the 
pressure gradient in the two pipes. It is convenient to represent the flow behaviour as a 
graph of w  plotted against 8 /u D , as shown in Figure 3. In accordance with the above 
discussion, all data fit a single line for laminar flow. The graph is steeper for turbulent flow 
and different lines are found for different pipe diameters. It is noteworthy that the same 
would be found for Newtonian flow if the data were plotted in this way and the laminar 
flow line would be a straight line of gradient µ passing through the origin. The plot in 
Figure 3 is not a true flow curve because the flow characteristic is equal to the magnitude of 
the wall shear rate only in the case of Newtonian laminar flow. 



 
Incompressible Non-Newtonian Fluid Flows 

 

61 

 

 
Fig. 3. Shear stress at the pipe wall against flow characteristic for a non-Newtonian fluid 
flowing in a pipe 

Given a wall shear stress-flow characteristic curve such as that in Figure 3, the flow rate-
pressure drop relationship can be found for any diameter of pipe provided the flow remains 
laminar and is within the range of the graph. For example, if it is required to calculate the 
pressure drop for flow in a pipe of given diameter at a specified volumetric flow rate, the 
value of the flow characteristic 3(8 / 4 / )u D Q R  is calculated and the corresponding 
value of the wall shear stress w  read from the graph. The pressure gradient, and hence the 
pressure drop for a given pipe length, can then be calculated. 

It is found useful to define two quantifies K' and n' in order to describe the w  -flow 
characteristic curve. If the laminar flow data are plotted on logarithmic axes as in Figure 4, 
then the gradient of the curve defines the value of n' : 

 
ln

'   
ln(8 / )

wd
n

d u D


  (26) 

The equation of the tangent can be written as 

 
'8

    '
n

w
u

K
D

    
 

 (27) 

In general, both K' and n' have different values at different points along the curve. The 
values should be found at the point corresponding to the required value of w. In some 
cases, the curve in Figure 4 will be virtually straight over the range required and a single 
value may be used for each of K' and n'. Although equation (27) is similar to the equation of 
a power law fluid, the two must not be confused. 

The reason for defining n' in this way can be seen from equation (21) where the inverse of 
the derivative occurs in the correction factor. Equation (20) can be written in terms of n' as 

 

8u/D 

Laminar 

Decreasing 
diameter 

Turbulent 

D0 D1 
D3 
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Fig. 4. Logarithmic plot of wall shear stress against flow characteristic: the gradient at a 
point defines n' 

 
. . 3n'+1

  
4n'N      

 
 (28) 

Equation (28) is helpful in showing how the value of the correction factor in the 
Rabinowitsch-Mooney equation corresponds to different types of flow behaviour. For a 
Newtonian fluid, n' = 1 and therefore the correction factor has the value unity. Shear 
thinning behaviour corresponds to n' < 1 and consequently the correction factor has values 
greater than unity, showing that the wall shear rate w  is of greater magnitude than the 
value for Newtonian flow. Similarly, for shear thickening behaviour, w  is of a smaller 
magnitude than the Newtonian value wN . The value correction factor varies from 2.0 for n' 
= 0.2 to 0.94 for n' = 1.3. 

6. Generalized Reynolds number for flow in pipes 

It is recalled that for Newtonian flow in a pipe, the Reynolds number is defined by 

   
uD

Re



  (29) 

In the case of non-Newtonian flow, it is necessary to use an appropriate apparent viscosity. 
Although the apparent viscosity µa is defined in the same way as for a Newtonian fluid, it 
no longer has the same fundamental significance and other, equally valid, definitions of 
apparent viscosities may be made. In flow in a pipe, where the shear stress varies with 
radial location, the value of µa varies. It is shown that the conditions near the pipe wall that 
are most important. The value of µa evaluated at the wall is given by 

 
shear stress at wall

   
shear rate at wall ( / )

 = 
x

a dv dr




  


 (30) 

Another definition is based, not on the true shear rate at the wall, but on the flow 
characteristic. This quantity, which may be called the apparent viscosity for pipe flow, is 
given by 

ln() 

ln(8u/D) 
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shear stress at wall

  
flow characteristic (8 / )

 = 
i

ap u d
   (31) 

For laminar flow, µap has the property that it is the viscosity of a Newtonian fluid having the 
same flow characteristic as the non-Newtonian fluid when subjected to the same value of 
wall shear stress. In particular, this corresponds to the same volumetric flow rate for the 
same pressure gradient in the same pipe. This suggests that µap might be a useful quantity 
for correlating flow rate-pressure gradient data for non-Newtonian flow in pipes. This is 
found to be the case and it is on µap that a generalized Reynolds number Re' is based 

 Re'  i

ap

ud


  (32) 

Representing the fluid's laminar flow behaviour in terms of K' and n' 

 
'

8
   '     

n

i

u
K

d
 

  
 

 (33) 

The pipe flow apparent viscosity, defined by equation 31, is given by 

 
' 1

8
  '

8 /

n

ap
i i

u
K

u d d



 

   
 

 (34) 

Using µap in Equation (34), the generalized Reynolds number takes the form 

 
2 ' '

' 1'   
8 '

n n
i

n

u d
Re

K
 

  (35) 

Use of this generalized Reynolds number was suggested by Metzner and Reed (1955). For 
Newtonian behaviour, K' = µ and n' = 1 so that the generalized Reynolds number reduces to 
the normal Reynolds number. 

7. Turbulent flow of Inelastic non-Newtonian fluids in pipes and circular 
ducts 

Turbulent flow of Newtonian fluids is described in terms of the Fanning friction factor, 
which is correlated against the Reynolds number with the relative roughness of the pipe 
wall as a parameter. The same approach is adopted for non-Newtonian flow but the 
generalized Reynolds number is used. The Fanning friction factor is defined by 

 
1 2
2

  f
u



  (36) 

It is straightforward to show that the Fanning friction factor for laminar non-Newtonian 
flow becomes 

 16 /Re'f   (37) 
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This is of the same form as equation for Newtonian flow and is one reason or using this 
form of generalized Reynolds number. Equation (37) provides another way of calculating 
the pressure gradient for a given flow rate for laminar non-Newtonian flow. 

7.1 Laminar-turbulent transition 

A stability analysis made by Ryan and Johnson (1959) suggests that the transition from 
laminar to turbulent flow for inelastic non-Newtonian fluids occurs at a critical value of the 
generalized Reynolds number that depends on the value of n'. The results of this analysis 
are shown in Figure 5. This relationship has been tested for shear thinning and for Bingham 
plastic fluids and has been found to be accurate. Over the range of shear thinning behaviour 
encountered in practice, 0.2 ≤ n' ≤ 1, the critical value of Re' is in the range 2100 ≤ Re' ≤ 2400. 

 
Fig. 5. Variation of the critical value of the Reynolds number with n' 

7.2 Friction factors for turbulent flow in smooth pipes 

Experimental results for the Fanning friction factor for turbulent flow of shear thinning 
fluids in smooth pipes have been correlated by Dodge and Metzner (1959) as a generalized 
form of the yon Kármán equation: 

 1 '/2
1/2 0.75 1.2
1 4.0 0.40

 = log[ ']
( ') ( ')

nf Re
f n n

   (38) 

This correlation is shown in Figure 6. The broken lines represent extrapolation of equation 
(38) for values of n' and Re' beyond those of the measurements made by Dodge and 
Metzner. More recent studies tend to confirm the findings of Dodge and Metzner but do not 
significantly extend the range of applicability. Having determined the value of the friction 
factor f for a specified flow rate and hence Re', the pressure gradient can be calculated in the 
normal way. 

Example 3 

A general time-independent non-Newtonian liquid of density 961 kg/m3 flows steadily with 
an average velocity of 2.0m/s through a tube 3.048 m long with an inside diameter of 0.0762 
m. For these conditions, the pipe flow consistency coefficient K' has a value of 1.48 Pa s0.3 
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and n' a value of 0.3. Calculate the values of the apparent viscosity for pipe flow µap, the 
generalized Reynolds number Re' and the pressure drop across the tube, neglecting end 
effects. 

 
Source: D. W. Dodge and A. B. Metzner, AIChE Journal 5 (1959) 189-204 

Fig. 6. Friction factor chart for purely viscous non-Newtonian fluids. 

Calculations 

The flow characteristic is given by 

18 8(2.0 / )
= 210

0.0762
u m s

s
D m

  

and 

' 1
(0.3 1.0) 0.78

 210 0.0237
nu

s
D


    

 
 

Hence 

' 1
0.3 0.78

'  (1.48 Pa s )(0.0237 ) 0.0351 Pa s
n

ap
u

K s
D




    
 

 

and 

3(0.0762 m)(2.0 m)(961 kg/m )
'   = 4178

(0.0351 Pa s)ap

uD
Re




   
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From Figure 6, the Fanning friction factor f has a value 0.0047. Therefore the pressure drop is 
given by 

3 22 2(0.0047)(3.048 m)(961 kg/m )(2.0 m/s)u
= 1445 Pa

2 (0.0762 m)
  4f

i

L
d

P f  
 

 
   

8. Laminar flow of inelastic fluids in non-circular ducts 

Analytical solutions for the laminar flow of time-independent fluids in non-axisymmetric 
conduits are not possible. Numerous workers have obtained approximate and/or complete 
numerical solutions for specific flow geometries including square, rectangular and 
triangular pipes (Schechter, 1961 ; Wheeler and Wissler, 1965 ; Miller, 1972 ; Mitsuishi and 
Aoyagi, 1969, 1973). On the other hand, semi-empirical attempts have also been made to 
develop methods for predicting pressure drop for time-independent fluids in ducts of non-
circular cross-section. Perhaps the most systematic and successful friction factor analysis is 
that provided by Kozicki et al . (1966, 1967) . It is useful to recall here that the equation (19) is 
a generalized equation for the laminar flow of time-independent fluids in a tube and it can 
be slightly rearranged as: 
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Similarly, one can parallel this approach for the fully developed laminar flow of time 
independent fluids in a thin slit (Figure 7) to derive the following relationship: 
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In order to develop a unified treatment for ducts of various cross-sections, it is convenient to 
introduce the usual hydraulic diameter Dh (defined as four times the area for flow/wetted 
perimeter) into equations (39) and 40). 

For a circular pipe, Dh = D and hence equation (38) becomes: 
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For the slit shown in Figure 7, the hydraulic diameter Dh= 4h , and thus equation (39) is 
rewritten as: 

 
(8 / )1 8

+( )
2

h
w w

w h

d u D u
d D

 


   (42) 

By noting the similarity between the form of the Rabinowitsch–Mooney equations for the 
flow of time-independent fluids in circular pipes (equation (41)) and that in between two 
plates (equation (42)), they suggested that it could be extended to the ducts having a 
constant cross-section of arbitrary shape as follows: 
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Fig. 7. Laminar flow between parallel plates 

where a and b are two geometric parameters characterizing the cross-section of the duct 
(a=1/4 and b= 3/4 for a circular tube, and a =1/2 and b =1 for the slit) and w  is the mean 
value of shear stress at the wall, and is related to the pressure gradient as: 
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For constant values of a and b , equation (42) is an ordinary differential equation of the form 
(d y/d x) + p(x) y = q(x) which can be integrated to obtain the solution as: 

 ( ) ( )
0( )p x dx p x dxy e e q x dx C    (45) 

Now identifying y= (8V/Dh) and x = w , p(x) =(b /a w ) and q(x)= (f( w )/a w ), the solution 
to equation (43) is given as: 
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where ξ is a dummy variable of integration. The constant C0 has been evaluated by using the 
condition that when V =0, w = 0 and therefore, C0 =0. 

For the flow of a power-law fluid, f(τ) = (τ/K)1/ n and integration of equation (46) yields: 
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which can be rewritten in terms of the friction factor, f = 2 w /ρu2 as: 
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where the generalized Reynolds number, 
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Table 6. Values of a and b depending on geometry of the ducts  


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The main virtue of this approach lies in its simplicity and the fact that the geometric 
parameters a and b can be deduced from the behaviour of Newtonian fluids in the same 
flow geometry. Table 7 lists values of a and b for a range of flow geometries commonly 
encountered in process applications. 

Kozicki et al.(1966) argued that the friction factor of the turbulent flow in non-circular ducts 
can be calculated from the following equation 

 (2 )/2 0.25
100.75 1.2

1 4 0.4 ( )
log (Re ) 4 log[ ]

3 1
n

g
a a bn

f n
nf n n

 
  


 (50) 

Note that since for a circular tube, a= 1/4 and b =3/4, equation (50) is consistent with that for 
circular pipes. The limited data available on turbulent flow in triangular (Irvine Jr, 1988), 
rectangular (Kostic and Hartnett, 1984) and square ducts (Escudier and Smith, 2001) 
conforms to equation (48). In the absence of any definite information, Kozicki and Tiu (1988) 
suggested that the Dodge–Metzner criterion, Reg  2100, can be used for predicting the limit 
of laminar flow in non-circular ducts. 

Some further attempts have been made to simplify and/or improve upon the two geometric 
parameter method of Kozicki et al . (1966, 1967). Delplace and Leuliet (1995) revisited the 
definition of the generalized Reynolds number (equation (49)) and argued that while the use 
of a and b accounts for the non-circular cross-sections of the ducts, but the factor 8n-1 

appearing in the denominator is strictly applicable for the flow in circular ducts only. Their 
reasoning hinges on the fact that for the laminar flow of a Newtonian fluid, the product 
(f.Re) is a function of the conduit shape only. Thus, they wrote 

 
48

  
( . )f Re

   (51) 

where both the (Fanning) friction factor and the Reynolds number are based on the use of 
the hydraulic diameter, Dh and the mean velocity of the flow, u. Furthermore, they were able 
to link the geometric parameters a and b with the new parameter β as follows: 

 
1

  ;      
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 
 (52) 

and finally, the factor of 8n-1 in the denominator in equation (49) is replaced (24/ β)n-1. With 
these modifications, one can use the relationship f =(16/Reg) to estimate the pressure 
gradient for the laminar flow of a power-law fluid in a non-circular duct for which the value 
of β is known either from experiments or from numerical results. Therefore, this approach 
necessitates the knowledge of only one parameter (β) as opposed to the two geometric 
parameters, namely, a and b in the method of Kozicki et al . (1966) and Kozicki and Tiu 
(1967), albeit a similar suggestion was also made by Miller (1972) and Liu (1983). Finally, for 
the limiting case of a circular pipe, evidently β=3 thereby leading to a=(1/4) and b=(3/4) and 
the two definitions of the Reynolds number coincide, as expected. The values of β for a few 
standard duct shapes are summarized in Table 5. While in laminar flow, these two methods 
give almost identical predictions, the applicability of the modified method of Delplace and 
Leuliet (1995) has not been checked in the transitional and turbulent flow regions. Scant 
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analytical and experimental results suggest that visco-elasticity in a fluid may induce 
secondary motion in non-circular conduits, even under laminar conditions. However, 
measurements reported to date indicate that the friction factor–Reynolds number behaviour 
is little influenced by such secondary flows (Hartnett and Kostic, 1989). 

Example 4 

A power-law fluid (K = 0.3 Pa.sn and n = 0.72) of density 1000 kg/m3 is flowing in a series of 
ducts of the same flow area but different cross-sections as listed below: 

i. concentric annulus with R= 37mm and σ=(R/Ri)= 0.40 
ii. circular pipe of radius R 
iii. rectangular, (H /W) =0.5 
iv. elliptical, b’/a’= 0.5 

Estimate the pressure gradient required to maintain an average velocity of 1.25m/s in each of 
these channels. Use the geometric parameter method. Also, calculate the value of the 
generalized Reynolds number as a guide to the nature of the flow. 

Solution 

i. For a concentric annulus, σ = 0.4 

- From Table 6 we have: a =0.489; b = 0.991 
- The hydraulic diameter, Dh = 2R(1-σ)=0.044m. 

- Reynolds number, 
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- Thus, the flow is laminar and the friction factor is estimated as: f=1/578=0.0276 and  
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ii. For a circular tube, the area of flow 

- For a circular pipe, a =0.25, b = 0.75, Dh = D = 0.0678m 

- Reynolds number, 
2

1
Re 1070

8 ( )

n n
h

g
n n

u D
a

K b
n

 


 


 

- The flow is laminar and the friction factor is estimated as: f=1/1070=0.01495 and  
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iii. For a rectangular duct with H /W = 0.5, H =0.0425 m and W= 0.085 m (for the same area 
of flow), and from Table 6: a=0.244, b= 0.728 

- Dh = 4HW/2(H+W) = 0.0567m 

- Reynolds number, 
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- f=1/960=0.0167 and 
22

919 /
h

f uP
Pa m

L D


    

iv. elliptical, b’/a’= 0.5. 

- From Table 6 : a=0.2629, b= 0.7886 
- Dh = = 0.0607m 
- Reynolds number, Re 953g   

- f =0.0168 and 864 /
P

Pa m
L


   
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1. Introduction 

A solid oxide fuel cell (SOFC) is a device that converts the chemical energy of fuels into 
electrical energy (Singhal & Kendall, 2003). SOFCs have received much attention from 
researchers due to their promise of delivering relatively clean energy at high efficiencies 
(Singhal & Kendall, 2003). An SOFC consists of a few basic parts: an anode, a cathode, an 
electrolyte, and interconnect wires (Singhal & Kendall, 2003). The electrolyte in an SOFC is a 
solid oxide such as Yttria-Stabilized Zirconia (YSZ). The porous anode is usually a ceramic-
metal composite (so called cermet) such as the nickel-zirconia cermet (Ni-YSZ). The porous 
cathode is usually a composite of strontium-doped lanthanum manganite (LSM) and Yttria-
Stabilized Zirconia (LSM-YSZ) (Singhal & Kendall, 2003) or a composite such as 
gadolinium-doped ceria-lanthanum strontium cobalt ferrite (GDC-LSCF) (Anandakumar et 
al., 2010). Oxygen atoms undergo reduction on the porous cathode surface, and the resulting 
oxide ions are transported through the electrolyte to the porous anode. Here, the oxide ions 
react with the fuel (such as hydrogen). Hydrogen is oxidized, and the electrons of the oxide 
ions are liberated. The free electrons give rise to electric current (Singhal & Kendall, 2003). 

Research on SOFCs has concentrated on many different aspects, including anode, cathode, 
and electrolyte materials; investigating the behavior of different SOFC configurations; 
modeling and simulating electrochemical, thermal, and flow phenomena; and performing 
thermal stress and probability of failure analyses. Researchers have employed experimental, 
analytical, and computational approaches in their investigations. For example, Selcuk and 
Atkinson (1997, 2000) conducted a number of experimental studies to estimate various 
mechanical properties of SOFC ceramic materials such as YSZ and NiO-YSZ. They 
determined the biaxial flexural strength and fracture toughness of YSZ both at room 
temperature and an operating temperature of 900⁰C (Selcuk & Atkinson, 2000). They also 
experimentally studied the dependence of the Young’s modulus, shear modulus, and 
Poisson’s ratio of YSZ and NiO-YSZ (amongst other ceramic materials) on porosity (Selcuk 
& Atkinson, 1997). The results of these studies were summarized by the authors (Atkinson 
& Selcuk, 2000) where they also suggested techniques for improving the mechanical 
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behavior of SOFC ceramic materials under certain operating conditions. Toftegaard et al. 
(2009) conducted uniaxial tensile tests on pure YSZ specimens and YSZ specimens coated 
with porous NiO-YSZ layers. They heat-treated the coated YSZ specimens at various 
temperatures to study the effect of heat treatment at different temperatures on the strength. 
Pihlatie et al. (2009) experimentally determined the Young’s modulus (amongst other 
mechanical properties) of Ni-YSZ and NiO-YSZ composites as a function of porosity using 
the Impulse Excitation Technique (IET). They also used IET to study the dependency of the 
Young’s modulus of these materials on temperature. Giraud and Canel (2008) also 
conducted experimental studies using IET to determine the variation of the Young’s 
modulus of YSZ, LSM, and Ni-YSZ with temperature. Wilson and Barnett (2008) conducted 
experimental studies on Ni-YSZ/YSZ/LSM-YSZ SOFCs with Ni-YSZ anodes of different 
compositions to investigate the effect of varying composition of the anodes on their 
performance and microstructure. Their studies involved serial-sectioning using a focused 
ion beam scanning electron microscope (FIB-SEM) to obtain images of the microstructures of 
the different samples. They conducted stereological analyses on these images to calculate 
volume fractions and triple-phase boundary (TPB) densities for their samples. Zhang et al. 
(2008) proposed an analytical model for calculating residual stresses in a single SOFC with 
NiO-YSZ/YSZ/LSM composition. They used their model to estimate the residual stresses in 
an SOFC at room temperature and to study the variation of the stresses in the different 
components with changes in component thicknesses. They also carried out a Weibull 
analysis to calculate the probability of failure of the anode, and they studied the variation of 
the failure probability of the anode with changes in component thicknesses.  

Laurencin et al. (2008) have proposed a numerical (finite element analysis-based) tool for 
studying the degradation of anode-supported and electrolyte-supported planar SOFCs 
under several types of mechanical loads, including residual stresses. They have also 
calculated the failure probabilities of the SOFCs using Weibull analysis. Pitakthapanaphong 
and Busso (2005) carried out finite element analyses to investigate the fracture of multi-
layered systems used in SOFCs, such as LSM films on a YSZ substrate. They have pointed 
out that fracture is caused by large residual stresses induced during the SOFC 
manufacturing process due to thermal expansion coefficient (TEC) mismatch between 
different layers. They observed different cracking patterns (surface cracks, channeling 
cracks, and interfacial cracks) in physical samples of multi-layered systems. Their study 
involved FE simulations to determine the crack driving force (energy release rate) for the 
three observed cracking patterns. Johnson and Qu (2008) used a three-dimensional 
stochastic reconstruction method to create multiple realizations of the microstructure of 
porous Ni-YSZ cermet used as SOFC anode material. They analyzed these microstructure 
realizations using finite element software to determine the effective elastic modulus and 
effective coefficient of thermal expansion (CTE) of Ni-YSZ as a function of temperature. 
Anandakumar et al. (2010) carried out FE analyses to estimate thermal stresses and 
probability of failure in functionally graded SOFCs. They employed a continuum mechanics 
approach and used graded finite elements to discretize effective media consisting of NiO-
YSZ/YSZ/LSM as well as NiO-YSZ/YSZ/GDC-LSCF. They used the Weibull method to 
determine the failure probability of the individual components of the SOFC, as well as the 
failure probability of the whole SOFC. They found that the thermal stresses developed in 
functionally graded SOFCs under spatially uniform and non-uniform temperature loads are 
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lower than those induced in conventional layered SOFCs. They also found that functionally 
graded SOFCs show a lower probability of failure than other types of SOFCs. 

In this work, three-dimensional micromechanical finite element (FE) models for real solid 
oxide fuel cell (SOFC) anode and cathode microstructures are generated from a stack of two-
dimensional image-based FE models of anode and cathode microstructures. Finite element 
analysis (FEA) of the models is carried out to determine their mechanical response to a 
steady-state temperature change from room temperature up to an operating temperature. 
The resulting stress distribution is determined in each case, and the stresses are analyzed 
using the Weibull method to calculate the probability of failure. The anode material is Ni-
YSZ, while the cathode material is LSM-YSZ. Both linear elastic and elastic-plastic 
(nonlinear) behaviors are considered for nickel in the analysis of the anode. It is observed 
that the linear elastic models underestimate the probability of failure of the anode. The effect 
of temperature-dependent material properties on the probability of failure of the anode and 
cathode is also investigated. The novelties of this work include micromechanical finite element 
analysis of the mechanical response of anode and cathode microstructural models considering 
temperature-dependent material properties and nonlinear elastic-plastic behavior of the nickel phase. 

2. Image-based microstructural finite element models  

The first step in this work was to digitally reconstruct a three-dimensional (3-D) anode 
microstructure from two-dimensional (2-D) images of anode cross-sections obtained using 
focused ion beam-scanning electron microscopy (FIB-SEM). The 2-D images of the anode 
and cathode microstructures were obtained from Dr. Scott Barnett’s research group at 
Northwestern University (Wilson et al., 2006, 2009). The initial 3-D reconstruction was 
achieved using IMOD (Kramer et al., 1996), a free collection of image processing programs 
developed by scientists at the Boulder Laboratory for 3-D Electron Microscopy of Cells. 
IMOD is capable of creating a stack of 2-D images, interpolating the gaps between 
consecutive images, and creating and displaying the 3-D model. A few representative 2-D 
images and the 3-D reconstruction of the anode microstructure are shown in Figure 1. The 
in-plane dimensions of the reconstructed anode are 5 μm x 6 μm, while the thickness is 3.54 
μm.  

                   
Fig. 1. Two-dimensional SEM images of anode (left) and cathode (center) cross-sections 
(Wilson et al., 2006, 2009) and a reconstructed three-dimensional anode (right) 

In the SEM images of the anode, white (pixel value 255) corresponds to nickel, gray (pixel 
value 127) to YSZ, and black (pixel value 0) to the pores. In the images of the cathode, white 
(pixel value 255) represents LSM, gray (pixel value 127) represents YSZ, and black (pixel 
value 0) represents the pores. The reconstructed 3-D model was used as a check on the 
geometry of the 3-D FE model.  
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The next step involved the creation of a single 2-D FE model from a single 2-D SEM image. 
FE modeling was carried out using the commercial FE software ABAQUS v6.9 (Dassault 
Systems Simulia Corp., Providence, Rhode Island, USA). This was done by writing a 
MATLAB ® program (R2010a, The MathWorks, Inc., Natick, Massachusetts, USA) to 
recreate the geometry of the image using 2-D finite elements (4-node quadrilateral elements) 
and write the geometry data to an ABAQUS input file. Exactly one element was assigned to 
each pixel in the image, and the element was assigned to the appropriate element set (nickel 
or YSZ) based on the pixel value. Information concerning the material properties, boundary 
conditions, initial temperature, temperature field, and required outputs (e.g. principal 
stresses) was also specified in the input file. The input file was then run using ABAQUS to 
generate the 2-D FE model as shown in Figure 2.  

 
Fig. 2. Two-dimensional FE model of a single cross-section of the SOFC anode 

The 3-D FE anode and cathode models were created by making a stack of all the 2-D images 
and introducing a “buffer” plane between each pair of consecutive images. This was  
necessary and useful to ensure a simple step variation in material properties between 
corresponding regions in two consecutive images. Then the gaps between consecutive 
images were interpolated by assigning one three-dimensional 8-node brick element to each 
volumetric pixel (or voxel). Thus, the 3-D geometries of the anode and cathode 
microstructures were recreated in the 3-D FE models of the anode and cathode. Various 
free-body cuts of the 3-D FE anode model are shown in Figure 3.  

                            
Fig. 3. Free-body cuts of the three-dimensional FE model of the SOFC anode 

3. Finite element analysis of anode and cathode models 

3.1 Analysis models and metrics 

The FE analysis of the anode and cathode models was carried out to investigate the effect of 
various temperature loads, as well as the effect of variation of material properties with 
temperature, on the mechanical response and probability of failure. In the case of the anode, 
the effect of nonlinear (elastic-plastic) behavior versus linear elastic behavior of nickel was 
also investigated, which has not been studied in the literature.  
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The FE analyses of the anode and cathode models were divided into different categories as 
explained in Tables 1 and 2. In each case, the FE model was subjected to fixed boundary 
conditions (i.e. all nodes on each of the six faces were allowed neither to translate nor to 
rotate). The behavior of the model with increasing temperature loads was investigated by 
subjecting the model to eight different spatially uniform predefined temperature fields of 
magnitude 120⁰C, 220⁰C, 320⁰C, ..., 820⁰C. In each analysis, the initial temperature was 
specified as 20⁰C (room temperature), so that the model was subjected to eight different 
magnitudes of temperature change (ΔT = 100⁰C, 200⁰C, 300⁰C, ..., 800⁰C)..  
 

Case Ni YSZ 
Temperature-

dependence (Ni) 

Temperature-
dependence 

(YSZ) 
Case 1: 

Temperature-
independent 

Linear 
elastic 

Linear 
elastic 

None None 

Case 2: 
Temperature-

dependent CTEs 

Linear 
elastic 

Linear 
elastic 

CTE CTE 

Case 3: Elastic-
plastic behavior 

of Ni 

Elastic-
plastic 

Linear 
elastic 

CTE Young’s 
modulus, CTE 

Table 1. Metrics for finite element analyses of anode 

 

Case LSM YSZ 
Temperature-
dependence 

(LSM) 

Temperature-
dependence 

(YSZ) 
Case 1: 

Temperature-
independent 

Linear 
elastic 

Linear 
elastic 

None None 

Case 2: 
Temperature-

dependent 

Linear 
elastic 

Linear 
elastic 

Young’s modulus Young’s 
modulus, CTE 

Table 2. Metrics for finite element analyses of cathode 

3.2 Material properties 

Table 3 lists the room temperature material properties used for nickel, YSZ and LSM 
(Johnson & Qu, 2008; Anandakumar et al., 2010).  
 

Material 
Young’s modulus 

(GPa) 
Poisson’s ratio CTE (10-6 ⁰C-1) 

Nickel 207 0.31 12.50 
YSZ 205 0.30 10.40 
LSM 40 0.25 11.40 

Table 3. Room temperature material properties used in FE analyses  
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Figure 4 shows the variation of the coefficients of thermal expansion of nickel and YSZ with 
temperature (Johnson & Qu, 2008). The CTE of LSM was assumed to be constant over the 
temperature range considered. The room temperature value of the CTE of LSM (as shown in 
Table 3) was used in the FE analyses of the cathode.  

 
Fig. 4. Variation of CTE of nickel and YSZ with temperature (Johnson & Qu, 2008). 

Figure 5 shows the variation of the Young’s modulus of LSM and YSZ with temperature 
(Giraud & Canel, 2008). The Young’s modulus of nickel was assumed to be constant over the 
temperature range considered. The room temperature value of the Young’s modulus of 
nickel (as shown in Table 3) was used in the FE analyses of the anode.  

 
Fig. 5. Variation of Young’s modulus of LSM and YSZ with temperature (Giraud and Canel, 
2008). 
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Figure 6 shows the stress-strain curve used to describe the elastic-plastic behavior of nickel 
(Ebrahimi et al., 1999). It was assumed in this work that the stress-strain curve of nickel does 
not change over the temperature range considered. 

 
Fig. 6. Stress-plastic strain curve for nickel (Ebrahimi et al., 1999).  

4. Finite element analysis results and discussion 

4.1 Stress analysis 

The full 3-D FE models of the anode (50:50 NiO:YSZ weight percentage composition) and 
cathode (50:50 LSM:YSZ weight percentage composition) are shown in Figure 7. The FE 
anode model consists of 406,465 elements and 473,181 nodes. The cathode model has 244,584 
elements and 395,131 nodes. 

                
Fig. 7. Three-dimensional FE models of anode (left) and cathode (right)  

4.1.1 Anode microstructure 

The von Mises stress contour plots for the anode at ΔT = 100⁰C, 500⁰C, and 800⁰C are shown 
considering elastic-plastic behavior of nickel in Figure 8. The stress values are in units of 
N/m2 (i.e., Pa). 
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Fig. 8. Von Mises stress contour plots for anode considering elastic-plastic behavior of 
nickel: (left to right) ΔT = 100⁰C, ΔT = 500⁰C, ΔT = 800⁰C 

Figure 8 shows that as ΔT increases from 100⁰C to 800⁰C, the stresses in the anode also 
increase. This happens because thermal stress is proportional to the CTE, and the CTEs of both 
nickel and YSZ increase with temperature, as seen from Figure 4. Also, the stress plots show 
that the stresses are greater near the regions of pores due to stress concentration, as expected. 
Similar results are obtained for the cases with temperature-independent material properties 
and temperature-dependent CTEs. The effect of the elastic-plastic behavior of nickel on the 
principal tensile stress values (as compared with the linear elastic behavior assumed in the 
cases with temperature-independent material properties and temperature-dependent CTEs) is 
discussed in section 4.2.1, which deals with failure probability calculations for the anode.  

4.1.2 Cathode microstructure 

The von Mises stress contour plots for the cathode at ∆T = 100⁰C, 500⁰C, and 800⁰C are 
shown in Figure 9 considering temperature-dependent material properties. 

    
Fig. 9. Von Mises stress contour plots for cathode considering temperature-dependent 
material properties: (left to right) ∆T = 100⁰C, ∆T = 500⁰C, ∆T = 800⁰C 

Figure 9 shows that as ΔT increases from 100⁰C to 800⁰C, the stresses in the cathode also 
increase. This result can be explained, just as in the case of the anode, by the fact that 
thermal stress is proportional to the CTE, and the CTE of YSZ increases with temperature 
while the CTE of LSM is assumed constant over the temperature range considered. Also, the 
plots show that the stresses are greater near the regions of pores due to stress concentration. 
Similar results were obtained for the case with temperature-independent material 
properties. The effect of temperature-independent versus temperature-dependent material 
properties on the principal tensile stresses induced in the cathode is discussed in section 
4.2.2, which deals with failure probability calculations for the cathode.  
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4.2 Probability of failure analysis 

Ceramic materials exhibit brittle behavior under tensile stress. Also, unlike metals, they 
show wide variability in tensile strength values and follow a statistical strength distribution. 
Thus, the Weibull method of analysis (Weibull, 1951; Laurencin et al., 2008) was used to 
calculate the probability of failure of each SOFC component (anode/cathode). According to 
the Weibull method, the survival probability of a particular component j under the action of 
a tensile stress σ is given by (Laurencin et al., 2008): 

  
0 0

, exp
j

m
jj

s j
V

dV
VP

V




          
 (1) 

where j = anode or cathode, Vj is the volume of component j, V0 is a characteristic specimen 
volume (reference volume) for the material of component j, σ0 is the characteristic strength 
of the material of component j, and m is the Weibull modulus of the material. The 
characteristic strength σ0 is also the scale parameter for the distribution, while the Weibull 
modulus m is the shape parameter. The reference volume V0 is related to the characteristic 
strength σ0 of the material. 

In our case, however, the Weibull method was slightly modified to account for the fact that 
the anode and cathode materials are composites made up of two different components (Ni-
YSZ for the anode and LSM-YSZ for the cathode). The method employed is described next. 
The Weibull parameters used for the ceramic materials (LSM and YSZ) are shown in Table 4 
(Laurencin et al., 2008). Only room temperature values of the Weibull parameters were used 
in this study.  
 

Material 
Weibull modulus, 

m 
Characteristic 

strength, σ0 (MPa) 
Reference volume, 

V0 (mm3) 

LSM 7.0 52.0 1.21 

YSZ 7.0 446.0 0.35 

Table 4. Weibull parameters of ceramic materials (room temperature values) 

The results of each stress analysis case were post-processed by writing programs to extract 
the three principal stress values from each element in the anode and cathode FE models. 
These principal stresses were then used to perform a Weibull analysis to determine the 
probability of failure of the anode and cathode at each ∆T value. Since the SOFC component 
materials are subjected to a multi-axial state of stress, the total survival probability of each 
ceramic phase of the anode/cathode under the action of the three principal stresses (σ1, σ2, 
and σ3) was calculated. The principal stresses were assumed to act independently, and the 
total survival probability was calculated as the product of the survival probabilities under 
the action of each individual principal stress (Laurencin et al., 2008): 

    3

1
, ,j j

s sj i j
i

V VP P 


   (2) 

Also, 
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  
0 0

, exp
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m
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s i j
V

dV
VP

V



          
 (3) 

where, j = YSZ for the anode, j = LSM or YSZ for the cathode, and i = 1, 2, and 3. Only tensile 
values of the three principal stresses were used in the Weibull analysis. The probability of 
failure of each phase was then calculated as follows (Anandakumar et al., 2010): 

  1.0 ,j
f s jVP P     (4) 

The probability of failure of the anode was calculated as the failure probability of the YSZ 
phase, keeping in mind that the anode material is a cermet composite (Ni-YSZ), and that the 
Weibull distribution is more appropriate for calculating the failure probability of ceramics 
(such as YSZ) (Laurencin et al., 2008). The strength distribution for metals such as nickel is 
closer to a normal distribution (Meyers & Chawla, 1999). Since the cathode is a composite of 
two different ceramic materials (LSM-YSZ), the probability of failure of the cathode was 
calculated by extracting positive (tensile) values of the three principal stresses from each 
element in the LSM and YSZ element sets of the cathode FE model, and subjecting these to 
the Weibull analysis. This resulted in two different failure probability values for the LSM 
and YSZ phases of the cathode, which were combined into a single probability of failure 
value for the cathode by assuming that the cathode fails when either phase fails (or when 
both phases fail simultaneously). The probability that both phases fail simultaneously was 
calculated by assuming that the failures of the two phases are independent events, and 
hence the probability of simultaneous failure of the two phases is just the product of the 
probabilities of failure of LSM and YSZ:  

 cathode
ff LSM YSZP P   

     cathode
f f ff LSM YSZ LSM YSZP P P P      

       cathode
f f f ff LSM YSZ LSM YSZP P P P P     

4.2.1 Anode  

The probability of failure (Pf) value for the YSZ phase of the anode was calculated at each ΔT 
value (100⁰C, 200⁰C, ..., 800⁰C) for each case described in Table 1. These values are plotted in 
Figure 10. Since these Pf values are calculated on the basis of the tensile principal stresses in 
the YSZ phase, the variation of the maximum principal tensile stress (MPTS) in the YSZ 
phase of the anode with temperature in all three cases (temperature-independent material 
properties, temperature-dependent CTEs, and elastic-plastic behavior of Ni) is shown in 
Figure 11.  

The Pf plot for the anode (Figure 10) shows that the probability of failure increases with 
increasing ∆T values (and hence increasing stresses), for each of the three cases considered 
(temperature-independent material properties, temperature-dependent CTEs, and elastic-
plastic behavior of nickel). Also, the plot shows that the linear elastic material behavior 
models significantly underestimate the probability of failure of the anode (defined by the Pf 
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Fig. 10. Probability of failure values for anode 

 
Fig. 11. Maximum principal tensile stress in the YSZ phase of the anode   

values of the YSZ phase), as compared with the model that considers nonlinear elastic-
plastic behavior of nickel, especially at high temperatures. This may be explained by 
referring to Figure 11, which shows that the maximum principal tensile stress (MPTS) in the 
YSZ phase of the anode increases with increasing ∆T values for all three cases, as expected. 
Figure 11 also shows that when the elastic-plastic behavior of Ni is taken into account, the 
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MPTS in the YSZ phase attains higher values than when linear elastic behavior is assumed, 
especially at high temperatures. This can be explained as follows: when the Ni phase enters 
the nonlinear (plastic) part of its stress-strain curve at higher temperatures (and hence 
higher strains), lower stresses are induced in the Ni phase than if its stress-strain curve had 
been purely linear elastic with the same value of Young’s modulus. Thus, when the Ni 
phase starts showing nonlinear behavior, a higher proportion of the temperature-induced 
stresses are redistributed into the YSZ phase, resulting in higher MPTS values in the YSZ 
phase (and hence higher Pf values for the anode).          

Figure 10 also shows that the case with temperature-dependent CTEs shows higher Pf 
values than the case with temperature-independent material properties at intermediate and 
high temperatures. Again, Figure 11 shows that with temperature-dependent CTE values, 
higher tensile stresses are induced in the YSZ phase of the anode than with temperature-
independent material properties, especially at intermediate and high temperatures. This can 
be explained by referring to Figure 4, which shows that the CTEs of both Ni and YSZ 
increase with temperature. Since thermal stresses are proportional to CTE values, it can be 
expected that the case with temperature-dependent CTEs will show higher MPTS values 
(and hence higher Pf values) than the case with temperature-independent material 
properties, which uses constant (room-temperature) values of the CTEs.   

4.2.2 Cathode 

The probability of failure (Pf) values for the LSM and YSZ phases of the cathode were 
calculated and combined, as described above, at each ΔT value (100⁰C, 200⁰C, ..., 800⁰C) for 
both the cases described in Table 2. These values are plotted in Figure 12. 

 
Fig. 12. Failure probability values for cathode  
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The Pf plot for the cathode shows that the probability of failure of the cathode increases with 
increasing ∆T values (and hence increasing stresses), for both temperature-independent and 
temperature-dependent material properties, as expected. Higher Pf values are obtained 
when temperature-independent material properties are considered. A physical explanation 
for this observation is suggested by the temperature variation of the Young’s modulus of 
YSZ. For YSZ, E decreases from a value of 205 GPa at T = 20⁰C to a value of 147.5 GPa at T = 
800⁰C, as shown in Figure 5. On the other hand, when temperature-independent material 
properties are considered, the Young’s modulus of YSZ has a constant value of 205 GPa. 
Thus, because of the large decrease in the Young’s modulus of YSZ with increasing 
temperature, lower stresses are induced in the cathode in the case with temperature-
dependent material properties than in the case with temperature-independent material 
properties. This in turn leads to lower Pf values in the case with temperature-dependent 
material properties as compared with the case that considers temperature-independent 
material properties. This is confirmed by the MPTS plot for the cathode shown below 
(Figure 13), which compares the maximum principal tensile stress induced in the YSZ and 
LSM phases of the cathode for temperature-independent and temperature-dependent 
material properties.  

 
Fig. 13. Maximum principal tensile stress in LSM and YSZ phases of cathode 

The plot above shows that the MPTS induced in the LSM phase for temperature-dependent 
material properties is lower than the MPTS in the LSM phase for temperature-independent 
material properties over the entire temperature range. Similarly, the MPTS induced in the 
YSZ phase for temperature-dependent material properties is lower than the MPTS induced 
in the YSZ phase for temperature-independent material properties over the entire 
temperature range. This implies that the cathode Pf values, which are calculated on the basis 
of the positive (tensile) principal stresses in the LSM and YSZ phases, will be higher for the 
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temperature-independent material properties case than for the temperature-dependent 
material properties case, as is indeed observed.  

5. Conclusions 

Three-dimensional FE models of SOFC anode and cathode microstructures were 
constructed from a stack of two-dimensional SEM images of actual cross-sections of anode 
and cathode microstructures. The models were subjected to spatially uniform predefined 
temperature fields of increasing magnitude and the resulting distribution of stresses was 
obtained using FEA. The obtained stresses were subjected to Weibull analyses to determine 
the failure probability of the anode and cathode as a function of temperature. The novelties of 
this work include FE analysis of the mechanical response of microstructure-based anode and cathode 
models to temperature loads, consideration of temperature-dependent material properties of the anode 
and cathode materials, and consideration of nonlinear elastic-plastic behavior of the nickel phase of the 
Ni-YSZ anode. The Weibull analyses showed that the linear elastic material models 
underestimate the failure probability of the anode at high temperatures; hence, it is 
important to consider the nonlinear behavior of the nickel phase of the Ni-YSZ anode. Also, 
it was found that consideration of temperature-independent material properties of the 
cathode materials results in higher failure probability values than those obtained with 
temperature-dependent material properties. 
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1. Introduction 

In hydraulic systems, pumps are the major source of noise and vibration. It generates flow 
ripples which interact with other hydraulic components, such as transmission lines and 
valves to create harmonic pressure waves, i.e., fluid-borne noise (FBN). Fig. 1 shows a 
typical oscillating pressure measured at the outlet of a ten-vane pump running at 1500 rpm. 
Fig. 2 gives the frequency spectrum for the pressure signal which contains harmonic 
components of the fundamental frequency, 25 Hz, which correlates with the pump 
operating speed. The largest peak is at 250 Hz, which corresponds to the shaft speed times 
the number of the pumping elements (10 vanes in this case). The FBN propagates along as 
well as interacts with the tubing and other components to result in airborne noise (ABN) 
and structure-borne noise (SBN, i.e., structural vibration). These noises can become 
excessive, and lead to damage the tubing system and other components. Therefore, to study 
the pressure wave propagation in the hydraulic tubing system, it is important to take the 
fluid-structure interaction into account to further the understanding of noise transmission 
mechanism. 

Fluid-structure interaction can be divided into three categories: junction coupling, Poisson 
coupling, and Bourdon coupling. Junction coupling occurs at discontinuities, such as bends 
and tees, where the pressure interacts with the structure to cause structural vibration. In 
unsteady flow, the pressure varies along the tube. Differences in pressure exert axial and 
transverse forces during power transmission at bends and other locations where the 
diametrical geometry changes. Moreover, the pressure is related to the longitudinal stresses 
in the pipe because of the radial contraction or expansion via Poisson coupling (Hatfield & 
Davidson, 1983). Furthermore, the cross-sectional shape of the line in a bend is not circular 
because of action by the bending forces. This effect, known as the Bourdon effect (Tentarelli, 
1990), influences the structural modes at low frequencies. 

Several approaches have been used (To & Kaladi, 1985; Everstine 1986; Nanayakkara & 
Perreia, 1986), such as the transfer matrix and finite element (FEM) methods, to model the 
fluid-structural coupling. In this study, the transfer matrix method (TMM) is used because 
of its simplicity. Even though FEM may offer better accuracy, it is more complicated and 
time-consuming than TMM. 
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Fig. 1. Pressure waveform measured at the outlet of a ten-vane power steering pump 
running at 1500 rpm. The periodic waveform is generated by the rotating elements of the 
pumping mechanism. 
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Fig. 2. Frequency spectrum of the pressure signal shown in Fig. 1 Pump speed: 1500 rpm; 
number of pumping elements: 10; fundamental pump rotational frequency: 25 Hz 

Davidson and Smith (1969) first studied fluid-structure interactions using the TMM and 
verified their model with their own experimental data. Their data were used widely by 
subsequent researchers (Davidson & Samsury, 1972; Hatfield & Davidson, 1983) to verify 
analytical models which did not include viscosity. Hatfield et al. (1982) applied the 
component synthesis method in the frequency domain. In their method, fluid-structure 
interaction was included in terms of junction coupling. Their simulation predictions were 
validated with Davidson and Smith’s (1969) experimental data. Bundy et al. [9] introduced 
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structural damping which was neglected by other researchers in previous experimental and 
theoretical investigations. 

Brown and Tentarelli (1988) arranged the 1414 transfer matrices for n segments and then 
assembled them into a global 14(n-1)14(n-1) sparse matrix. This approach was beneficial 
because, by solving the linear equations, the state variables at every point were obtained. 
Their algorithm also avoided round-off error at higher frequencies. Fluid friction was not 
considered in their analysis. Chen (1992), and Chen and Hastings (1992; 1994) considered 
both the fluid-structure interaction caused by discontinuities and the viscosity of the fluid in 
a distributed parameter, transfer matrix model of the transmission line in an automotive 
power steering system. 

Most researchers verified their models with a simplified experimental system; for example, 
L-tube or U-tube systems. Until now, the system model has not been verified in a complex 
tubing system. In this book, a transfer matrix system model incorporating the acoustic 
characteristics of termination is developed to predict the fluidborne noise in a complex 
three-dimensional tubing system. The results show good agreements between simulated 
and experimental data. 

2. Analysis 

2.1 Axial motion 

For a three-dimensional tubing system, fluidstructural coupling must be considered 
because tubing discontinuities, such as bends, cause unbalanced forces to act on both the 
tubing and fluid. Fig. 3 displays the coordinate system and state variables in a straight tube 
segment used in the following analysis. 

Assuming axisymmetric, two-dimensional, laminar, viscous, compressible flow and 
negligible temperature variation (i.e., constant fluid viscosity), the linearized NavierStokes 
equations reduce to (Chen, 2001): 

 
2
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  1 1
   

z z z

f

pv v v
t z r rr

  
   

 
    

  
 (1) 

where vz , vr , and p denote the deviation of axial velocity, radial velocity, and pressure from 
the steady state, respectively. 

Combining the continuity equation and equation of state for a liquid, gives: 

 0
   

r r z p  v v  v1
β t r r z
  

   
  

 (2) 

where  is the fluid bulk modulus. 

By averaging vz over the cross section, applying the boundary condition at the inner radius 
of the tubing, f zu u , and transforming to the Laplace domain, the following equation is 
obtained: 
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Fig. 3. Hydraulic line coordinate system and state variables: u is translational displacement 
of tubing;  , angular displacement of tubing; f, force acting on the tubing; h, moment acting 
on the tubing; fp , fluid pressure; fu , fluid displacement; and subscripts x, y, and z the axes 
for the Cartesian coordinates (adapted from Chen, 1992). 
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where 
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,  f is the fluid density, and Jo and J1 are the zero and 

firstorder Bessel functions of the first kind, respectively, and s denotes the Laplace 
transformation. 

Applying Newton’s second law to the tubing wall, yields: 

 2 
 

z
z

F
F As U

z 


 


 (4)  

where F  is the friction force per unit length acting on the inner tubing wall, A  is the cross-
sectional area of the tubing, and   is the density of the tubing. 

Applying Newton’s second law to the fluid gives: 

 2 
 f f f f
P

A F A s U
z  

  


 (5) 

where fA  is the cross-sectional area of the fluid. 

Combining Equations (4) and (5), gives: 

 2 2  
  

z
f z f f f

F P
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z z
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Substituting Equation (3) into Equation (6), and rearranging Equation (6) yields: 

 2 2 1 1
1 1

 ( ) ( )
z

f f z f f f
F

A A s U A s U
z s s

  
                     

  (7) 

2.1.2 Poisson effect 

The Poisson effect, longitudinal motion resulting in radial strain of the tubing or vice versa, 
was not included in previous work (Chen, 1992). The axial strain of the tubing, z , in a 
cylindrical coordinates is written as: 

  1
 

z
z z r

 u
z E    


   


 (8) 

where   is the stress, E  and   are the elastic modulus and Poisson’s ratio for the tubing 
material, respectively, and subscripts z , r  and   are the cylindrical coordinates. 

For thick-walled tubing, the radial and tangential stresses can be represented as: 
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Combining Equations (8) and (9), gives: 
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 (10) 

For conservation of mass to hold, the axial change in volume of a fluid element results from 
pressure and expansion of the tubing. Radial expansion of the tubing is caused by pressure, 
and axial motion of the tubing results from Poisson coupling: 

 
2 1

 
f

z
e

 u
f p

z EA





 


 (11) 

where e  is an effective fluid bulk modulus that accounts for compliance of the tubing wall. 
When the Poisson effect is neglected, Equations (10) and (11) reduce to equations for 
longitudinal motion of a bar. 

2.1.3 Bourdon coupling 

The Bourdon effect occurs at bends where the fluid-filled tubing cross-section is ovalized. 
Bending of the tubing results in a change of cross-sectional area and thus fluid motion. The 
fluid pressure gradient in the bend produces a bending moment in the tubing, and the 
balancing bending moment in the tubing then displaces the fluid. For curved tubing, the 
Bourdon coupling is described by Reissner et al. (1952) and Tentarelli (1990): 
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, vR  is the radius of curvature of the bend, and a 

and b are the major and minor axes of the elliptical cross section, respectively. 

Equations (12) and (13) reduce to the common flexural motion equations for a = b (i.e., 
circular cross-section). When there is no fluid pressure present, 22A  can be approximated as 
a flexural stiffness with a correction factor to account for the ovalization effect. The effect 
produces a reduction in stiffness at bends in the transmission line. 

Several straight short-length segments are used to model the bends and twists in the three-
dimensional tubing line. To account for the ovalization effect, a correction factor is used to 
adjust the flexural stiffness for the curved line. The correction factor ( ) for the flexural 
stiffness is formulated as Vigness (1943): 
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 (14) 

The product of   and a flexural stiffness can be shown to be a simplified form of 22A  
(Reissner et al., 1956). 

2.2 Flexural and torsional motion 

Rearranging Equations (3), (7), (10) and (11), and considering the flexural motions in the x-z 
and y-z planes, and torsion about the z-axis in Laplace domain, four groups of linear, first
order differential equations are obtained (Chen 2001): 
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 (16) 
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Equations (15)  (18) can be represented in the following form: 

        ; 1,4
 k k kS A S k
z


  


 (19) 

where  kA  is coefficient matrix, T
1 z f zS P F U U    , T

2  x y x yS U H F    , 
T

3 y x y xS U H F     and   T
4 z zS H  . 

Solving Equation (16) by employing boundary conditions at the inlet (z = 0) of each section 
yields: 

    [ ] 
 0

kA L
k kz L z

S e S
   (20) 

where   0k z
S 

is the substate vector at the inlet. 

Relating the two end conditions for a given section i, yields the 1414 field transfer 
matrix   iT : 

      1    i i i
S T S   (21) 

A three-dimensional tubing system can be treated as a combination of short straight lines 
with different orientations resulting in coupling of the fluid pressure, and forces and 
moments in the tubing wall. Each section of tubing is modeled by a 1414 transfer matrix 
with state variable vectors. Details on the assembly of the 1414 matrix can be found in 
Chen [11]. Each bend is broken into three straight-line segments. For these segments, the 
correction factor,  , is used to include the Bourdon effect by replacing the flexural 
stiffness EI with EI  in Equation (14). 

A transformation matrix [R] transfers the force and displacement from one section to 
another, couples structural vibration and fluid pressure waves at points of discontinuity, 
and transforms the coordinate system from one section to the next. Force and moment 
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equilibrium, conservation of mass flow, and structural continuity are considered when 
deriving the transformation matrix (Chen, 1992). Finally, the relationship between one end 
of the system and the other is obtained by multiplying [R] and [T] for each line section: 

            1    1  1  1n n n
S R T R T S            (22)  

2.3 Implementation of the matrix partitioning algorithm 

The transfer matrix method solves the equations of motion step by step and determines the 
unknown variables (translational displacement, angular displacement, force and moment) 
simultaneously in the solution process. Because of the transfer matrix chain multiplication, 
as shown in Equation (22), numerical errors occur and build up as the multiplicative process 
progresses. In this study, matrix partitioning was applied to the system of equations to 
eliminate the long chain of matrix multiplication. 

In most tubing systems, the boundary conditions at each end are defined because the tubing 
is attached to the pump outlet and the rotary valve inlet. Therefore, to reduce numerical 
error, matrix partitioning originally developed by (Clark, 1956) was used. With known 
boundary conditions at the ends, the state variables are re-arranged as follows: 
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 (24) 

where 1
aS  and 1

a
nS  are the known state variables, and 1

bS  and 1
b

nS   are the unknown 
variables. 

By using the matrices  1MR  and   1n
MR  , the following equations are obtained: 

      *
1  1  1

S MR S  (25) 

       *
1  1  1n n n

S MR S    (26) 

      1  *
1  1  1

S MR S  (27) 

The relationship between one end and the other for the first element is:  

       1 2  21
S TR S  (28) 

where       21  1  1
TR R T  . 

Combining Equations (27) and (28) and arranging the unknown variables on the left side, 
yields: 



 
Noise and Vibration in Complex Hydraulic Tubing Systems 

 

97 

   ** 1 1
21  211:14, 1:141:14, 1:14 2 14 14

14 ( 14) ( 14) 1 14 1

0

b a

b
a a

S S
TR I TR

S 
    

    
      

        
 (29) 

where       * 1
 21  21  1

TR TR MR   . 

Similarly, the equation of the last section of tubing can be written as: 
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where       *
 1,  1  1,n n n n n

TR MR TR    and       1,  n n n  n
TR R T  . 

By rearranging the equations for all tubing sections, the global matrix is obtained: 
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 (31) 

To solve for the unknown state variables in Equation (31), MATLAB command “\”, which 
solves the system of linear equations by Gaussian elimination, was used in the simulation. 

2.4 Acoustic impedance of hydraulic system components 

Impedance characteristics of hydraulic components have an important effect on pressure 
pulsations in hydraulic circuits. These pressure oscillations lead to vibrations and are a 
source of noise. By using plane wave propagation theory, impedances can be estimated 
using the two-microphone technique (ASTM E 1050-90, and ASTM C 384-108a). 

Fig. 4 displays an acoustic impedance representation for the hydraulic circuit Five 
parameters can be used to define this system: the source impedance ( sZ ), source flow ripple 
( sQ ), line impedance ( cZ ), line propagation constant (  ), and termination impedance ( tZ ). 
The source pressure ( sP ) is derived from sZ .  
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Fig. 4. Acoustic representation of a hydraulic circuit 
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The pressure ( zP ) and volumetric flow velocity ( zQ ) at any harmonic frequency at a 
distance z along the line are: 

 z z
z i rP P e P e    (32) 

  1 z z
z i r

c

Q P e P e
Z

    (33) 

where iP  and rP  are the complex incident and reflected pressures, respectively. 

The termination reflection coefficient, rC , is defined by the ratio of the reflected pressure to 
the incident pressure: 

 r
r

i

P
C

P
  (34) 

The pressures at locations 1z  and 2z  are: 

 1 1
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z z
z i rP P e P e    (35) 

 2 2
2

z z
z i rP P e P e    (36) 

Solving Equations (35) and (36) for iP  and rP , and substituting into Equation (34), the 
reflection coefficient is obtained: 
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If the impedance of the termination is tZ , applying Equations (32) and (33) at the boundary 
0z   (i.e., z L ) gives: 

    ' 0 ' 0i r tz z
P P P

 
   (38) 

     ' 0' 0i r c t t zz
P P Z P Z


     (39) 

By rearranging the above two equations and combining with Equation (34), the termination 
impedance can be represented in terms of cZ  and rC : 
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cZ is the characteristic impedance in the tubing given by Chen and Hastings (1992): 
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where c is the sound speed;   is the angular frequency; ir  is the inner radius of 
transmission line;   is the density and kinematic viscosity of the fluid, respectively; and 0J  
and 1J  denote the zero- and first-order Bessel functions of the first kind, respectively. 

The measuring pressure signals before the valve, the termination impedance can be readily 
determined by Equation (37) and (40). Fig. 5 displays the estimated impedance of the rotary 
valve in power steering system at various opening positions. The data show that modeling 
this valve as a pure resistance is not appropriate as a strong reactive component of the 
impedance is apparent.  
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Fig. 5. Amplitude and phase angle of the valve impedance 
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3. Experimental results 

An automotive hydraulic power steering tubing system was tested in this research. Detailed 
layout of this three-dimensional tubing transmission line was provided by the 
manufacturer. Since this study addresses pump induced noise, a system with a pump source 
was set up to verify the transfer matrix model for the tubing system. Fig. 6 illustrates the 
system layout. This includes the power steering pump, hydraulic transmission lines, a rack 
and pinion unit, steering wheel and column, and rotary valve. The steering pump is driven 
by an electric motor through a belt. A variable speed, AC controller is used to control the 
electric motor and vary the speed of pump. In this setup, a water-cooling system using a coil 
heat exchanger is used. Water from the building supply circulates through the coil heat 
exchanger connected to the return line and then flows into a drain. 
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Fig. 6. Experimental setup for an automotive hydraulic power steering tubing system 
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Four piezoelectric pressure transducers are used to measure the dynamic pressure in this 
system. The first pressure transducer (P1) is placed at the outlet of the pump to measure the 
source of pressure disturbance. The fourth one (P4) is located at the inlet of the rotary valve 
so that the amplitude ratio of outlet pressure to inlet pressure (P4/P1) can be measured and 
compared to the model prediction. The pressure signals are connected to the Kistler Charge 
amplifier and then to a HP3566A 8-channel analyzer. Data are saved in a computer and 
retrieved later for further analysis. 

Because the focus of this study is to investigate the fluidborne noise propagation in the 
tubing system and interaction with the tubing structure, the pressure frequency response of 
the tubing transmission line is investigated. To correlate the transfer matrix model with 
better accuracy, the sound speed in steel tubing and damping factor are experimentally 
estimated (Chen, 2001). The sound speed was optimized to be 1374 m/s. The frequency-
dependent damping in the system was estimated based on the Half-Power method. Figs. 7 
and 8 display the frequency response for the outlet pressure of the pressure side 
transmission line (P4) with different valve opening due to the steering wheel positions for 
an all steel tubing system. The model prediction and experimental data match very well. 
Good agreement was obtained. 
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Fig. 7. Pressure response of an all steel tubing system with a fully turned steering wheel. 
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Fig. 8. Pressure response of an all steel tubing system with a steering wheel at neutral 
position 

4. Conclusions 

A distributed-parameter transfer-matrix model is developed to predict the fluidborne noise 
in a complex tubing system. This study provides a systematic approach to predict the 
pump-induced fluidborne noise by incorporating the experimentally determined acoustic 
characteristics of valve termination. The developed model was supported by experimental 
measurement with good agreements. Inclusion of Poisson and Bourdon effects in the model 
provide better predictions. Furthermore, the transfer matrix-partitioning algorithm 
presented here not only can reduce truncation error but also be more efficient in comparison 
with the matrix chain multiplication. It is also noted that the damping of the tubing system 
needs to be included to better predict the peak amplitude. The mathematical model 
presented can be applied to the analysis of noise in other hydraulic systems, such as those 
used in air conditioners and power plants. However, to fully characterize the noise 
propagation/transmission in the tubing system, SBN (not presented here, but can also be 
predicted by the developed model) should also be investigated because of fluid-structure 
interaction. 
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1 Introduction 

Machining is the process of removing the material in the form of chips by means of wedge 
shaped tool[1]. The need to manufacture high precision items and to machine difficult-to-cut 
materials led to the development of the newer machining processes. The dimensional 
tolerance achieved by precision machining technology is on the order of 0.01 μm and the 
surface roughness is on the order of 1 nm. The dimensions of the parts or elements of the 
parts produced may be as small as 1 μm, and the resolution and the repeatability of the 
machine used must be of the order of 0.01 μm (10 nm). The accuracy targets for ultra-
precision component cannot be achieved by a simple extension of conventional machining 
processes and techniques. They are called precision machining processes, notwithstanding 
that the definition of conventional and traditional changes with time. Unlike conventional 
machining processes, precision machining processes are not based on the removing the 
metal in the form of chips using a wedge shaped tool. There are a variety of ways by which 
the material may be removed in precision machining processes. Some of them are abrasion 
by abrasive particles, impact of water, thermal action, chemical action and so on. 

When metal is removed by machining there is substantial increase in the specific energy 
required with decrease in chip size. It is generally believed this is due to the fact that all metals 
contain defects (grain boundaries, missing and impurity atoms, etc.), and when the size of the 
material removed decreases, the probability of encountering a stress-reducing defect 
decreases. Since the shear stress and strain in metal cutting is unusually high, discontinuous 
microcracks usually form on the metal-cutting shear plane. If the material being cut is very 
brittle, or the compressive stress on the shear plane is relatively low, microcracks grow into 
gross cracks giving rise to discontinuous chip formation[2]. When discontinuous microcracks 
form on the shear plane they weld and reform as strain proceeds, thus joining the transport of 
dislocations in accounting for the total slip of the shear plane. In the presence of a contaminant, 
the rewelding of microcracks decreases, resulting in decrease in the cutting force required for 
chip formation. Owing to the complexity of elastic-plastic deformation at nanometer scale, the 
world wide convinced precision materials removal theory is not built up until now. 

There are two basic approaches to the analysis of metal cutting process, namely, the analytical 
and the numerical method. As the complexity associate with the precision machining process, 
which involve high strains, strain rates, size effects and temperature, various simplifications 
and idealizations are necessary and therefore important machining features such as the strain 
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hardening, strain rate sensitivity, temperature dependence, chip formation and the chip-tool 
interface behaviors are not fully accounted for by the analytical methods. Experimental studies 
on precision machining are expensive and time consuming. Moreover, their results are valid 
only for the experimental conditions used and depend greatly on the accuracy of calibration of 
the experimental equipment and apparatus used. Advanced numerical techniques such as 
Finite Element Method is a potential alternative for solving precision machining problems.  

Finite Element Method (FEM) which is originated from continuum mechanics, has already 
been justified as successful method in analyzing complicated engineering problem[3-8]. There 
are many advantages of using FEM to investigate machining: multi-physical machining 
variables output can be acquired (cutting force, chip geometry, stress and temperature 
distributions), improving precision and the efficiency comparing with Try-Out-Method and so 
on. In the last three decades, FEM has been progressively applied to metal cutting simulations. 
Starting with two-dimension simulations of the orthogonal cutting more than two decades 
ago, researches progressed to three-dimensional FEM models of the oblique cutting, which 
capable of simulating metal cutting processes such as turning and milling. Increased 
computation power and the development of robust calculation algorithms (thus widely 
availability of FEM programs) are two major contributors to this progress. Unfortunately, this 
progress was not accompanied by new developments in precision machining theory so the 
age-old problems such as the chip formation mechanism and tribology of the contact surfaces 
are not modeled properly. Further, even at a moderate cutting speed, the strain rates are quite 
high, almost of the order of 104 per second and the temperature rise is also quite large. As a 
result, the visco-plasticity and temperature-softening effects become more important 
compared to strain-hardening. Therefore, the material properties associated with these two 
effects should be known for a range of strain rates and temperatures occurring in typical 
machining processes. Additionally, to incorporate the temperature rise in the analysis, one 
needs to solve the heat transfer equation governing the temperature field in conjunction with 
the usual three equations governing the deformation field. For plastic deformation, these 
equations are coupled, and hence difficult to solve.  

In material removal processes at the precision scale, the undeformed chip thickness can be 
on the order of a few microns or less, and can approach the nanoscale in some cases. At 
these length scales, the surface, subsurface, and edge condition of machined features and the 
fundamental mechanism for chip formation are much more intimately affected by the 
material properties and microstructure of the workpiece material, such as ductile/brittle 
behavior, crystallographic orientation of the material at the tool/chip interface, and micro-
topographical features such as voids, secondary phases, and interstitial particulates. 
Characterizing the surface, subsurface, and edge condition of machined features at the 
precision scale in the FEM analysis are of increasing importance for understanding, and 
controlling the manufacturing process. There are still many challenges in the investigation 
of precision machining by means of FEM. 

As mentioned above, this chapter will give some key factors on numerical modeling of 
precision machining and current advancements. 

2. The flow stress characteristics of the workpiece materials 

The flow stress characteristics are an important issue in the numerical analysis which is 
directly affects the loads and stresses in the precision machining. The flow stress is generally 
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considered as function of strain, strain rate and temperature. Many research works justify 
that the influence of strain rate on flow stress become more important when the temperature 
becomes higher. It is important to build the appropriate flow stress models fit for different 
working conditions. 

Accuracy and reliability of the predictions heavily depend on the materials flow stress at 
cutting areas such as high deformation rates and temperatures and variable friction 
characteristics at tool-chip interface which are not completely understood and need to be 
determined. Materials property at local shear band is very complex in the precision 
machining which makes it difficult to build up real robust flow stress model fitting for 
manufacturing process. Most of the energy consumption limited to local cutting area and 
transformed into heat which complicated the distribution of temperature at the local 
deformation area. The temperature plays an important role in the unstable chip flow. Larger 
plastic deformation rate and the intense friction at the tool-chip interface increase the heat 
generation rate and lead to the material softening thus decreasing the strain hardening 
ability and instability of materials flow. Therefore, the instability of shear behavior is 
directly induced by materials flow. Presently, researchers can’t build up reasonable 
materials consititutive relationship which can characterize strain rate and the temperature 
and reflect the variation of materials property in the precision machining process. 

Sound theoretical models based on atomic level material behavior are far from being 
accomplished. Semi-empirical constitutive models are widely utilized. Several material 
constitutive models are used in Finite Element (FE) simulation of metal cutting, including 
rigid-plastic, elasto-plastic, viscoplastic, elasto-viscoplastic and so on. These models take 
into account the high strains and temperatures reportedly found in metal cutting. Among 
others, the most widely used is the Johnson and Cook[7] (JC) model which is a thermo-elasto-
visco-plastic material constitutive model expressed as follows: 

   0
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    (1) 

here A is the initial yield stress of the material at the room temperature, strain rate 1/s and 
  represents the equivalent plastic strain. The equivalent plastic strain rate   is 
normalized with a reference strain rate 0 . Temperature term in JC model reduces the flow 
stress to zero at the melting temperature of the work materials, Tm, leaving the constitutive 
model with no temperature effect. In general, the parameters A, B, C, n, and m of the model 
are fitted to the data obtained by several material test conducted at low strains and strain 
rates and at room temperature as well as Split Hopkinson Pressure Bar (SHPB) test at strain 
rates up to 1000/s and at temperatures up to 600 °C. JC model provides good fit for strain-
hardening behavior of metals and it is numerically robust and can easily be used in FE 
simulation models. 

Besides, there are two major problems with the use of the discussed model and its method 
of the determination of its constants. First, only few laboratories and specialist in the world 
can conduct SHPB testing properly, assuring the condition of dynamic equilibrium. None of 
the known tests in metal cutting was carried out in these laboratories. Second, the high 
strain rate in metal cutting is rather a myth than reality. Third, the temperature in the so-
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called primarily deformation zone where the complete plastic deformation of the work 
materials takes place can hardly exceed 250 oC. It is understood that the mechanical 
properties of the work material obtained at room temperature are not affected by this 
temperature so metal cutting is a cold working process, although the chip appearance can be 
cherry-red. Fourth, it is completely unclear how to correlate the properties of the work 
materials obtained in SHPB uniaxial impact testing with those in metal cutting with a strong 
degree of stress triaxiality.  

3. The chip separation criterion on different materials used in the FEM  

Presently, two FE methods exist for analyzing the precision machining process. In the first 
method, it is assumed that the chip formation is continuous and the shape of the chip is 
known in advance. Thus, the process is analyzed as a steady-state process. This method is 
called Eulerian method. In this method, a chip separation criterion is not required. In the 
second method, the process is analyzed from the beginning to the steady state chip 
formation. This is called Updated Lagrangian Formulation. In this method, a chip separation 
criterion is required to predict the chip geometry. Early applications of finite element 
method to the machining process were mainly Eulerian method. The main objective of many 
of these studies was to predict the temperature distribution and therefore, the determination 
of deformation and stress fields was only an intermediate step. These studies considered the 
machined material as rigid-plastic. But, later applications of Eulerian formulation to 
machining process also included viscoplastic effects. All of these applications have 
considered only orthogonal machining. The first finite element study of the machining 
process using an modified Lagrangian Formulation was made by Strenkowski and Carrol[8]. 
A critical value of the equivalent plastic strain was used to model the separation of a chip. 
Later on, several researchers used the Updated Lagrangian Formulation for analyzing two- 
and three-dimensional machining processes. The criterion used for chip separation has been 
based on controlled crack propagation or some geometrical considerations. Remeshing 
technique has been used to simulate the chip formation. 

As the size of the material removed decreases in the precision machining, the probability 
of encountering a stress-reducing defect decreases. There are some new disciplines 
dominate the chip separation process. The metal cutting process is different from general 
metal forming process as there are always accompanied with chip separation or materials 
removal phenomenon. The separation of chip is of utmost important about numerical 
simulation of precision machining. The simulation results can only be meaningful only if 
the reasonable chip separation criteria which can reflect materials mechanical and 
physical property (such as morphology of chip, force, temperature and the residual stress 
etc.) were applied in the simulation model. Besides, the criterion for chip separation 
should be invariant for definite materials but not change with the different working 
conditions. In the metal cutting process, some kinds of materials may generate continuous 
chip while others may generate saw-like chip thus different materials fracture criteria 
should be included in the finite element model.  

Presently, there are two kinds of chip separation criteria, namely, the geometric criterion 
and the physical criterion. Materials removal (chip separation) using geometric criterion is 
realized through the variation of size of deformable body. On the other hand, the physical 
criterion is based on if some key physical parameters approached the critical value, these 
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physical criterion includes effective plastic strain criterion, strain energy density criterion 
and the fracture stress criterion and so on. 

3.1 Fracture mechanics criterion 

3.1.1 Stress intensity factor 

In reality, chip separation process can be assumed as the formation and development of 
crack. Under what conditions and what manners can the materials be cut off is closely 
related with the fracture criterion[2]. Consider plane crack extending through the thickness 
of flat plane. There are three independent kinematic movements of the upper and lower 
crack surfaces with respect to each other. These three basic modes of deformation are 
illustrated in figure 1, which presents the displacements of the crack surface of a local 
element containing the crack front. Any deformation of the crack surface can be viewed as a 
superposition of these basic deformation modes, which are defined as follows: 

1. Opening mode, the crack surfaces separate symmetrically with respect to the planes xy 
and xz 

2. Sliding mode, the crack surfaces slide relative to each other symmetrically with respect 
to the planes xy and skew-symmetrically with respect to plane xz 

3. Tearing mode, the crack surfaces slide relative to each other skew-symmetrically with 
respect to both planes xy and xz. 

 
                (i)                                               (ii)                                            (iii) 
Fig. 1. Three basic modes of crack extension (i) Opening mode; (ii) Sliding mode; (iii) 
Tearing mode 

The stress and deformation fields associated with each of these three deformation modes 
will be determined in the sequel for the case of plane strain and generalized plane stress. 
Solid materials is defined to be in a state of plane strain parallel to the plane xy if  

 u=u(x,y), v=v(x,y), w=0  (2) 

where u, v, w denote the displacement components along  the axes x, y and z. Chip separation 
originated from crack while the static, stable or extension of the crack are all closely related 
with the distribution of stress field around the crack. The study of stress field near the crack tip 
is of great important as this field govern the fracture process that takes place at the crack tip.  

a. Opening mode 

Infinite plate with a crack of length 2a subjected to equal stresses   at infinity is give by  

X 

Z

Y 



 
Continuum Mechanics – Progress in Fundamentals and Engineering Applications 

 

110 

 
2 2

( )I
z

Z z
z a





 (3) 

If we place the origin of the coordinate system at the crack tip z=a through the transformation  

 z a    (4) 

Then the equation (3) takes the form 
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using polar coordinates, r and   we have 

 ire    (6) 

the stress near the crack tip can be derived as follows: 
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here x , y  and xy  are the stress component, u, v and w are the displacement component, 
G is the shear modulus,   is the poisson ratio, 3 4   . The KI is the stress intensity 
factor and expresses the strength of the singular elastic stress field. As put forward by 
Irwin[9], equation (7) ~ (9) applies to all crack tip stress fields independently of crack/body 
geometry and the loading conditions. The stress intensity factor depends linearly on the 
applied load and is a function of crack length and the geometrical configuration of the 
cracked body.  
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Equation (13) can be used to determine the KI stress intensity factor when the ZI is known. 
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b. Sliding mode 

Following the same procedure in the previous case, and recognizing the general 
applicability of the singular solution for all sliding mode crack problems, the following 
equations for stresses and displacements are obtained: 
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The KII is the sliding mode stress intensity and can be obtained as following 
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c. Tearing mode 
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The stress intensity factor is a fundamental quantity that governs the stress field near the 
crack tip. Several methods have been used for the determination of stress intensity factors as 
listed following: 

a. Theoretical method (Westergaard semi-inverse method and method of complex 
potentials) 

b. Numerical method (Green’s function, weight functions, boundary collocation, 
alternating method, integral transforms, continuous dislocations and finite element 
method) 

c. Experimental method (photoelasticity, holography, caustics) 

Theoretical method is generally restricted to plates of infinite extent with simple geometrical 
configurations of cracks and boundary conditions. For more complicated situations one 
must result to numerical or experimental methods. 

The stress intensity factor is one of the key parameters for characterizing stress field around 
crack, which can be used as the criterion for crack extension. 

1. Single mode criterion 

The single mode criterion can be expressed as follows: 

 I ICK K , II IICK K , III IIICK K   (19) 

here ICK , IICK , IIICK  are the fracture toughness of I, II and III modes separately, which is 
also the inherent property of materials. 
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2. Mixed mode criterion 

The mixed mode criterion can be acquired using Ellipsoid Criterion: 
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3.1.2 J-integral theory 

The stress intensity factor can only be applied to small yield around crack tip, other 
appropriate parameters should be developed to evaluated the large fracture strength. Rice[10] 
introduced path independent line integral as the elastic-plastic parameter for characterizing 
the status of crack which also named as J-integral. Hutchinson[11] and Rice and Rosengren[12] 
showed that J uniquely characterizes crack tip stress and strains in nonlinear materials. Thus 
the J integral can be viewed as both an energy parameter and a stress intensity parameter. 
After that, many researchers investigate the J-integral which establish the theoretical 
foundation of the path independent J-integral and its use as a fracture criterion. Presently, 
the main efforts in the study of elastic-plastic fracture mechanics is building up the 
evaluating method on fracture strength using J-integral while the yield materials around 
crack tip can be considered as non-linear elastic materials. 

As for crack in the nonlinear elastic continuum medium, Rice[10] found that the integral 
around crack tip is path independent and is given by: 
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here w is the strain energy density, Ti is the component of the traction vector, ui is the 
displacement vector component and ds is a length increment along the contour  . The stress 
energy density is defined as: 
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Fig. 2. Arbitrary contour around the tip of a crack 

here ij  and ij  are the stress and strain tensors separately. The traction is a stress vector 
normal to the contour. That is, if we were to construct a free body diagram on the material 


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inside of the contour, Ti would define the normal stress acting at the boundaries. The 
components of the traction vector are given by: 

 i ij jT n  (23) 

here nj is the component of the unit vector normal to  . 

As for linear elastic materials, there some relationship as follows: 

  2 2 21 1
8 2I II IIIJ K K K G

 


      (24) 

As for nonlinear elastic materials, the system potential enclosed by curve   can be 
computed as follows: 

 ( ) j jW dA p u d 
 

       (25) 

Therefore 
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
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here a is the crack length. The J integral is essentially variation rate of system potential energy 
which is mainly transform into irreversible plastic work. If the work needed to extend crack a 
unit length is a constant, then the J integral based elastic-plastic fracture criterion can be 
deduced. It is because the J integral can be used to characterize the elastic plastic stress field 
solved by deformation theory that the J integral is selected as elastic plastic fracture criterion. 

In 1968, Hutchinson[11], Rice and Rosengren[12] investigated the elastic plastic stress field 
around crack using deformation theory and acquired singular solution as follows: 
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here I is definite integral of  , iu  is a function of  . In reality, it is difficult to solve the J 
integral using equation (27) ~ (29) because of the complex regular expression of ij , ij  and 

iu . The numerical method and the energy method are the two practical solutions. The 
numerical method mainly makes use of elastic-plastic finite element method and integrates 
along several paths around crack tip and acquires the J integral. The final J integral can be 
computed as follows: 
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 iJ
J

n
  (30) 

here Ji is the J integral corresponding to path i , n is the number of integrate path. The 
integrate path is generally continuous smooth curve which can reduce the error resulted by 
the discontinuous surface force. 

3.2 Geometrical criterion 

The geometrical criterion mainly takes effect through judging if the geometrical size of 
materials exceeding the criterion. Figure 3 shows the geometrical model in which a 
separation line is defined. The nodes at the chip side and the nodes at workpiece side are 
overlapped at the beginning. But the separation of two nodes occurs when the distance D 
between the tool cutting edge (point d, in Figure 3) and the node immediately ahead (node 
a) becomes less than a predefined critical value thus the machined surface and the chip 
bottom are generated. 

 

Fig. 3. Geometrical criterion model 

Usui and Shirakashi[13] first put forward the geometrical criterion and found it is a stable 
criterion. Komvopoulos and Erpenbeck[14] pointed that there should be enough distance 
between tool tip and the overlap point to prevent the convergence problem resulted by the 
excessive distortion of finite element mesh. Zhang and Bagchi[15] brought forward that the 
geometrical distance should be less than 30 percent to 50 percent of element length. 
Furthermore, they also put up a new geometrical separation criterion which is based upon 
the ratio of geometrical distance to depth of cut which is equivalent to the microscopic 
fracture mechanics criterion. 

The geometrical criterion is simple to be used in the FE computation. However, the distance 
(D) between tool tip and the separation point is closed to zero which result in the difference 
between the set value of D with the reality. The selection value of D will have a great 
influence upon the convergence of FE simulation and only the experienced researcher can 
deduce appropriate valuable critical value. In addition, the separation line which 
separates the mesh of chip and that of the workpiece should be built up in advance. 
Figure 4 shows the FE simulation of precision machining process based on geometrical 
separation criterion.  

Separation line 
Workpiece

Chip
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4. Materials deformation behavior in the precision machining 

The depth of cut in the precision machining is very small, chips are formed at very narrow 
regions. The work material is subjected to extremely high plastic deformation and the strain 
rates can reach the values of about 105 s-1. The large strain and high strain rate plastic 
deformation evolves out of hydrostatic pressure that travels ahead the tool as it pass over. The 
zone has, like all plastic deformations an elastic compression region that becomes the plastic 
compression region as the field boundary is crossed. The plastic compression generates dense 
dislocation tangles and networks which lead to the materials shear after the materials 
experience fully work hardened. The theory of micro-plasticity, which mathematically 
describes the stress and strain at small scale, is adopted to calculate the distributions of stress 
and strain in the distorted bodies.  

    
Fig. 4. FE simulation based on geometrical separation criterion 

4.1 Plastic deformation and chip formation in the precision machining titanium alloy 

The numerical analysis method applied to materials cutting process can be divided into two 
categories, namely, the elastic-plastic FEM and the rigid-plastic FEM. Furthermore, thermo-
elastic FEM and the thermo-rigid FEM are introduced if the temperature and the velocity are 
considered in the materials processing technology. The simulation results are almost same 
whether the problem analysed by either elastic-plastic FEM or rigid-plastic FEM if the size 
of the workpiece and the amount of discreted element are same for these two methods. The 
elastic-plastic FEM mainly applied to solve the residual stress and the elastic recovery while 
the rigid-plastic FEM cannot solve this type of problems as it ignored elastic deformation 
and thus it has higher solution efficiency. 

In this research work, the commercial finite element analysis package (Advantedge®) is 
utilized to gain good understanding of the materials deformation behavior underlying 
machining of titanium alloy. Among the different alloys of titanium, Ti-6Al-4V is by far the 
most popular with its widespread use in the chemical, surgical, ship building and aerospace 
industry. The primary reason for wide applications of this titanium alloy is due to its high 
strength-to-weight ratio that can be maintained at elevated temperatures and excellent 
corrosion and fracture resistance. On the other hand, Ti-6Al-4V is notorious for poor 
machinability due to its low thermal conductivity that causes high temperature on the tool 
face, strong chemical affinity with most tool materials, which leads to premature tool failure, 
and inhomogeneous deformation by catastrophic shear that makes the cutting force 

Separation line 
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fluctuate and causes tool wear, thereby aggravating tool-wear and chatter. This poor 
machinability has limited cutting speed to less than 60 m/min in industrial practice. 
Numerical analysis of Ti-6Al-4V machining process using finite element method is of great 
importance on understanding the physical essence and optimizing the machining technique 
parameters. 

4.2 Finite element formulation 

The FEM mesh is constituted by elements that cover exactly the whole of the region of the 
body under analysis[3]. These elements are attached to the body and thus they follow its 
deformation. Metal cutting process is a large deformation and finite strain related elastic-
plastic process. Therefore, both nonlinear material property and the nonlinear geometry 
property ought to be considered in the numerical analysis. Presently, typical finite element 
formulations used in metal cutting include Lagrangian or Eulerian method. Lagrangian 
formulation bases upon the original geometry which also termed as particle coordinates 
description, Eulerian formulation bases upon the deformed geometry which termed as 
floating coordinate description. These formulations are particularly convenient when 
unconstrained flow of material is involved, i.e., when its boundaries are in frequent 
mutation. In this case, the FE mesh covers the real contour of the body with sufficient 
accuracy. On the other hand, the Eulerian formulation is more suitable for fluid-flow 
problems involving a control volume. In this method, the mesh is constituted of elements 
that are fixed in the space and cover the control volume. The variables under analysis are 
calculated at fixed spatial location as the material flows through the mesh. This formulation 
is more suitable for applications where the boundaries of the region of the body under 
analysis are known a prior, such as in metal forming.  

Although both of these formulations have been used in modelling metal cutting processes, 
the Lagrangian formulation is more attractive due to the ever-mutating of the model used. 
The Eulerian formulation can only be used to simulate steady state cutting. As a result, 
when the Lagrangian formulation is used, the chip is formed with thickness and shape 
determined by the cutting conditions. However, when one uses the Eulerian formulation, an 
initial assumption about the shaped of the chip is needed. This initial chip shape is used for 
a matter of convenience, because it considerably facilitates the calculations in an incipient 
stage, where frequent problems of divergence of algorithm are found.  

The Lagrangian formulation, however, also has shortcomings. First, as metal cutting 
involves severe plastic deformation of the layer being removed, the elements are extremely 
distorted so the mesh regeneration is needed. Second, the node separation is not well 
defined, particularly when chamfered and/or negative rake or heavy-radiused cutting edge 
tools are involved in the simulation. Although the severity of these problems can be reduced 
to a certain extent by a denser mesh and by frequent re-meshing, frequent mesh 
regeneration causes other problems.  

These problems do not exist in the Eulerian formulation as the mesh is spatially fixed. This 
eliminates the problems associated to high distortion of the elements, and consequently no 
re-meshing is required. The mesh density is determined by the expected gradients of stress 
and strain. Therefore, the Eulerian formulation is more computationally efficient and 
suitable for modelling the zone around the tool cutting edge, particularly for ductile work 
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materials. The major drawback of this formulation, however, is that the chip thickness 
should be assumed and kept constant during the analysis, as well as the tool–chip contact 
length and contact conditions at the tool–chip and tool–workpiece interfaces. As the chip 
thickness is the major outcome of the cutting process that defines all other parameters of this 
process so it cannot be assumed physically. Consequently, the Eulerian formulation does 
not correspond to the real deformation process developed during a real metal cutting 
process.  

The Lagrangian formulation[16] under finite deformation is as follows: 

  
0 0

0
T T

t ij ij ij ijV V
p B S dV B S dV            (31) 

where  p  denotes the column vector of external force exerted at the discrete element 
nodes,  B  is the geometry matrix in the case of finite strain conditions and the  B  is the 
additional item induced by the geometric nonlinear conditions. 

4.3 Finite element model and simulation results 

The corresponding mesh is refined in some region as severe plastic deformation may be 
induced under material surface which is shown in figure 5. The most fundamental and 
crucial characteristic of metal cutting process lies in the formation of chip. In reality, the chip 
is not exactly “cut” but “sheared” away from the work material which forms a clear 
distinction between machining plastic metal and other materials. Figure 6 shows the chip 
formation process during precision machining of titanium alloy. Chip formed with the tool 
approaching the material from the right side and the chip flow in curved fashion. When the 
original chip thickness or feed rate or depth of cut is compared with the chip thickness after 
cutting, the deformation can be clearly observed. This deformation is fundamental for the  
 

Material Titanium 

Size (mm) 0.4 0.01 0.1   

Physical Property Elastic-Plastic Solid 
Depth of Cut(µm) 5 
Speed(mm/s) 200 

Temperature(℃) 20 

Table 1. FEM simulation parameters 

 
Fig. 5. FE simulation model 
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Fig. 6. FE simulation of precision machining of titanium alloy  

metal cutting process and involves large deformations of materials with very large strains 
and very high strain rates. The produced chip is in contact with the tool face in a highly 
pressurized zone causing sticking friction which transforms to sliding friction further up on 
the tool face. A large amount of heat is generated in the cutting zone as a result of plastic 
work and friction causing temperature rise in the tool and chip.  

There are three main plastic deformation areas in this precision machining process as shown 
in figure 6, namely, the first plastic deformation region, which dominates the kind and the 
morphology of the chip and generated large amount of heat, the degree of plastic 
deformation is closely related with materials stress-strain relationship; the second plastic 
deformation region where the intense tribology process is generated between bottom of chip 

(a) Timestep: 90                                                       (b) Timestep: 180 

(c) Timestep: 270                                                    (d) Timestep: 360 

(e) Timestep: 450                                                   (f) Timestep: 540 
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and rake face of cutting tool; the third plastic deformation region where the tribology 
behavior is generated between materials machined surface and the clear face of cutting tool. 
With the cutting in of tool, the elastic deformation is initially induced at the contact interface 
between cutting tool and materials. After that the titanium alloy becomes going into yield 
state with the further successively feeding of cutting tool and the plastic deformation region 
gradually comes into being ahead of cutting tool. The successive feeding of cutting tool 
results in the contraction of the elastic deformation and expansion of plastic deformation. 
The full contact between cutting tool and workpiece comes into being and the elastic-plastic 
deformation is generated. The simulation results show that fairly concentrated shear 
separates the nearly unstrained work materials from the fully strained chip. But no obvious 
region of secondary deformation is generated close to the rake face of tool. The contact 
length between rake face of cutting tool and the bottom is very small which also justifies 
most of the cutting process are accomplished by the local tool tip.  
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Fig. 7. Simulation results of cutting force 

 
Fig. 8. Deformation area in the metal cutting 

Metal cutting process at nanometer scale involves plastic deformation in small localized 
regions where opposing surface contact or in the interior of workpiece materials. As for chip 
formation, the single-shear plane model and practically all its “basic mechanics” have been 
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known since nineteenth century and referred as the Merchant (or Ernst-Merchant model) 
model[1]. This model has been the basis for most of the present metal cutting analysis. The 
first orthogonal model was brought forward in 1937 by Piispanen[1] and termed as card 
model. In this model, the material cut is assumed as a deck of cards inclined to the cutting 
direction which is shown in figure 9. Merchant assumed the chip to be formed over an 
infinite thin plane called shear plane. This shear plane starts from the cutting edge of the 
tool and crosses the chip on an angle with the cutting direction, which is termed as shear 
angle. When the chip passes the shear plane it is sheared away from the workpiece and 
increases in thickness. In this simulation, no single shear plane is observed in the whole 
precision machining process. On the other case, there some maximum stress band is 
continuously generated in front of cutting tool. This shear band possesses irregular 
geometry shape which extends from first deformation region to third deformation region. 

 
Fig. 9. Card of cutting process 

A zone of plastic deformation extends underneath the machined surface. This subsurface 
deformation will result in compressive stresses in the machined surface. Though the stress 
patterns are those with the load applied by the tool still present, elastic recovery caused by 
the unloading of the tool is not expected to significantly change the stress distribution close 
to the free surface. So the stress in the machined surface sufficiently far away from the tool 
can be taken to be the residual stress. The location of the nodes along the machined surface 
when compared with the location of tool cutting edge yields information about the elastic 
recovery of the machined surface after it passes under the tool. The elastic spring-back of the 
machined surface is found to be far less than the radius curvature of cutting edge which 
justify that most of the material in front of the rounded cutting edge is actually pushed 
ahead of the tool and not into the machined surface.  

The simulation results also shows that the continuous internal curling chip is generated 
under current working conditions. At the beginning, part of chip adjacent to the tool tip 
begins to curl and form helix circle with small radius. After that, the larger helix circle 
surround the previous small one is gradually formed with the feeding of the cutting tool. 

The deformation coefficients ( c

u

t
t

  ) is gradually increased in this process which result in 

the increasing of cutting force (figure 7). The stress along the free surface (back) of chip is 

Shear plane

tc

tu
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tensile. It is also tensile along the surface of chip which has moved out of the contact with 
the tool rake face (front) while the yy  in the middle of the chip is compressive. Such a 

distribution of stress is the critical factor to develop initial formation of chip.  

Presently, the hypotheses propounded by various researchers to explain the curvature of the 
chip include (i) The cutting moment causes the chip to bend; (ii) The ‘crushing’ of chip in the 
secondary shear zone and the resultant acceleration of the work material in moving through 
the secondary shear zone causes the chip to lengthen along this side (the front side). This 
can also results in a curvature of the chip which is similar to the curvature of a bimetallic 
strip; (iii) The shear plane is curved in such a way that the shear plane angle is smaller near 
the exit of shear plane. Thus the chip velocity on the back side is smaller than the average 
chip velocity which causes the chip to curl.  

The bending moment on the chip considered as a beam would result in compressive stress 
along the free surface (back) of the chip if hypothesis (i) was true. Crushing of the chip in the 
secondary shear zone will result in compressive yy  in the front (underside) of the chip. 
Only a curved shear plane would result in a stress distribution similar to that given by the 
finite element analysis, while simultaneously accounting for curl of the chip. It should be 
noted that though the chip does accelerate (due to secondary shear) as it flows along the 
rake face of tool, this is just an accessory to chip curl and not the cause of chip curl. The 
reason for the curvature of the shear plane can be found from a detailed analysis of the 
stress distribution in the zone of plastic deformation. Work in this direction is in progress. 

5. Conclusion 

With the increasing of high quality and accuracy of modern automated machining 
technology, numerical simulation of machining technology such as FEM is starting to 
emerge. The FEM based virtual machining simulation has the capability of calculating the 
results of process variables about the precision machining process used for optimization the 
cutting process thus providing many benefits to the metal cutting application. Presently, 
FEM is mainly of use to mechanical and materials engineering, as a tool to support process 
understanding, materials machinability development and tool design. The research efforts 
show that the model used in FEM of precision metal cutting process should be adequate to 
the process. But the concept of FE model should be broadened in order to embrace 
important facets physics including uncertainty, which has been axiomatized out of modern 
cutting research. Breakthrough in these directions will have considerable impact by making 
metal cutting simulation useful for practical optimization of various metalworking 
operations including the cutting and machine tools, the metal working fluids and fixtures 
and so on. 
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1. Introduction 

With the purpose to create high strength advanced structures, new materials are being 
developed presenting favorable characteristics for specific applications. Composite 
Materials are examples of these developments. They can be formed by high strength long 
fibers, conveniently oriented in a matrix, to form a lamina of composite material. The lamina 
presents high strength in the fiber direction, but, since it is slender, does not have enough 
rigidity, what makes impossible the use of an isolated lamina. Piling up and gluing a set of 
laminas, a laminate is formed which one presents better characteristics than original and 
isolated materials. The main strength of each lamina is oriented according to the fiber 
directions. Thus, micro cracks can be produced if sufficient tension is applied in the 
transverse direction of the fibers, as shown in figure 1, since the resistance of the lamina in 
these directions depends only on the matrix material. The rise of several transverse cracks 
produces loss of stiffness in the laminate. 

Several papers are found in technical literature dealing with the behavior of composite 
materials with transverse cracks. Vejen & Pyrz (2002) investigated the transverse crack 
growth in long fiber composites using the finite element method. Three criteria concerning 
pure matrix growth, fiber/matrix interface growth and crack kinking out of a fiber/matrix 
interface were implemented to form a software package for crack propagation calculus. 

Cain and colleagues (2003) have studied unidirectional graphite bismaleimide composites to 
determine the effect of the matrix dominant properties on the failure of the material. The 
authors showed that the final fracture was caused by the development of a dominant matrix 
shear crack parallel to the fibers. They also concluded that the decrease in shear modulus of 
the composite was the most sensitive and best represented by damage evolutions. 

Ogihara et al (1998) have proposed a two-dimensional model which considers that, in the 
case of displacements and stress fields in the interlaminar cross-play laminates, there is a 
prevalence of plane-strain case, even in the presence of transverse cracks. They have also 
commented that the failure process of cross-ply laminates is due an accumulation of 
transverse cracks and delamination.  
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Fig. 1. (a) A composite [0o/90o/0o]s laminate plate with transverse micro-cracks in the 
matrix; (b) extension of pre-micro cracks; (c) formation of new micro crack.  

An analytical model based on the principle of minimum potential energy was developed by 
Ji et al (1998) and applied to determine the two-dimensional thermoelastic stress state in 
cross-ply composite laminates containing multiple equally spaced transverse cracks in the 
90o plies subjected to tensile loading in the longitudinal direction. The criterion of strain 
energy release rate was employed to evaluate the critical applied stresses for two of the 
possible fracture modes. After some numerical experiments, they have concluded that the 
formation of new cracks never takes place until pre-existing cracks extends through the 
entire thickness of the 90o plies. 

Wada et al (1999) have presented a damage mechanics model to predict the nonlinear 
behavior of laminated composites due to crack evolution. A new concept of cracking layer is 
proposed by a technique based on uniform work-softening layer. With this concept, the 
constitutive equations for a cracking layer are constructed according to modern plasticity 
theory. So, the lamina damage surface is defined in the stress space and the constitutive 
equations for a cracking layer are constructed by applying the defined damage surface to 
the associated flow rule.  
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One of the first damages that occurs in composite laminate are the transverse cracks, as 
mentioned by Allen and colleagues (Allen et al 1987 a,b) and Tay and Lim (Tay & Lim, 
1996). The cracks appear in a layer where the highest stress values act transversally to the 
fiber, exceeding the matrix resistance. With loading increment, the increase on the number 
of transverse cracks may happen in a diffuse way reducing the structural rigidity. The 
accumulation of this damage can accelerate the beginning of delamination, changing the 
natural frequency of the composite structure and causing a greater degradation in severe 
environment, jeopardizing its service life. 

After the initiation and development of micro cracks, there is a process of accumulation of 
damage that reduces the structural stiffness.The tolerance to the damage is related to the 
stiffness of the structure which, in turn, is affected by the accumulation of micro defects 
during loading. The process of damage evolution in composite laminate is generally very 
complex due to the multiplicity of failure modes such as transverse cracks, delamination, 
decoupling fiber-matrix interface, and fiber breakage. The characterization of this process is 
generally possible when single cases are analyzed, where each failure mode can be 
separated and studied individually. The use of Fracture Mechanics, especially in terms of 
linear elastic fracture, has presented good results for isotropic material because, in this case,  
can be adequately characterized by a single parameter (the stress intensity factor). However, 
attempts to apply this method in composite laminates, whose behavior is orthotropic, have 
met unsatisfactory results, mainly when transverse cracks in the matrix are studied. 
Therefore, to determine changes of the mechanical properties in a laminate, the total number 
of cracks formed in the transverse layers must be taken to account, or, under a generalized 
crack distribution, the most appropriated methodology is based on Damage Mechanics. 

Many researchers have developed studies to evaluate the properties of laminates subjected 
to generalized cracks in the matrix. Among these ones, can be cited the papers of Allen et. al. 
(1987 a,b), Hashin (1987), Talreja (1984) and Lim & Tay.  

The present paper has the objective to apply the Continuum Damage Mechanics Theory to 
long fiber laminate composites. The transverse cracks appearance in the matrix implies in a 
rigidity loss due to damage accumulation. The increase of the load is considerate 
monotonically. Several failure criterions are presented and implemented such as, the 
Maximum Stress Criterion, the Maximum Strain Criterion, Tsai-Hill and Tsai-Wu Criterion. 
The proposed methodology is restrict to the case of symmetric laminate and it is evaluated 
by a numerical approximation technique known as Modified Local Green's Function 
Method (MLGFM), which one will be briefly descript on this paper. 

2. Representation of the generalized damage in symmetric laminates 

2.1 Constitutive relations 

The models developed by Talreja & Boehler (1990), Allen et. al. (1987 a,b) and Lim and Tay 
(1996) to describe the damaged composite laminates were based on the Continuum Damage 
Mechanics using internal state variables. In the presente paper, the model proposed by 
Allen et al (1987 a,b) will be used, which describes the damage through a set of internal state 
variables. The final result of the distributed damage is built in the constitutive equations 
through these variables. Thus, the stress-strain relationship of the representative volume of 
a damaged material at the level of a lamina is assumed as: 
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 ij ijkl kl ijkl klC I      (1) 

where ij is the applied stress tensor, Cijkl is the constitutive relation tensor of the 
undamaged material, kl are the strain tensor, ijklI are the elements of the damage matrix, 

kl
 are the internal state variables, and  = 1, 2, 3, …, refers to the damage modes. As 

suggested by Allen et al (1987 a,b), a first simplification can be made considering that the 
tensor Iijkl is the actual tensor of constitutive relationships, as shown in Equation (2). 

 ijklijklI C   (2) 

However, it is important to emphasize that equation (1) does not provide any information 
on how the damage state has been attained, that is, the history of damage accumulation. 
Thus, it is necessary to turn to Fracture Mechanics in search of a suitable criterion to 
evaluate the damage growth. Thereby, equation (1) is sufficiently general to permit the use 
of Classical Laminate Theory to determine the composite laminate constitutive relations 
with transverse cracks in the matrix. 

Supposing the representation of the laminated plate by plane elements located in its middle 
surface, the loads in a certain point inside this surface can be evaluated by the following 
expressions: 

    /2

/2

t
x y xyt

N dz  


   (3) 

    /2

/2

t
x y xyt

M zdz  


   (4) 

where {N}e {M} are, respectively, the force and moment resultants vectors, x, y, xy are the 
stresses in the plane of the lamina and t is the thickness of the laminate. Taking to account 
that {ε0} e {κ0} are the strain and bending vectors in the middle surface of the plate, [A], [B] 
and [D] are the laminate extensional stiffness matrix, coupling stiffness matrix and bending 
stiffness matrix, respectively, {DN}e {DM} are the damage vectors related to the force and 
moment resultants, the expressions (3) and (4) can be transformed to: 

          0 0
NN A B D     (5) 

          0 0
MM B D D     (6) 

Assuming that zk-1 e zk are the corresponding distances from the middle surface to the inner 
and outer surfaces of the kth lamina, respectively, [ ]kQ  and { }k  are the transformed 
reduced material stiffness matrix and the transformed vector of the internal state variables 
(expressed in global coordinates), respectively. The matrix and vectors presents in equations 
(5) and (6) can be expressed by: 
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The internal state variables vector has two components and is expressed by: 

  22 12
1
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where P is the total number of damage models being considered and 22 and 12 are the 
internal state variable of the problem.  

2.2 Determination of internal variables  

In spite of the random characteristic, as can be found in the work of Silberschmidt (2005), the 
transverse cracks are assumed to be uniformly distributed. In this way, the laminate 
behavior can be adequately represented by a representative unit volume of material 
containing a transverse crack, as shown in figure 2. In the particular case of symmetric 
laminates, the damage models are simplified and incorporate only two types of fracture, 
namely, Mode I (crack opening) and Mode I coupled with Mode III (shear out of plane). 
They are represented respectively by the internal variables 22 e 12. As only symmetric 
laminates are analyzed in this paper, just the α22 variable will be developed. 

The internal variable, equation (15), proposed by Allen (Allen et al., 1987 a,b) can be 
determined by a computational analysis based on Finite Element Method. The 
representative volume is modeled, as shown in figure 3, for the symmetric laminate 
[0o/90o/0o]. A uniform displacement is imposed in one side of the element to determine the 
opening of the crack. The size and shape of the representative volume depend on the 
thickness of the different plies and the crack density (the number of cracks per unit of 
volume). Then, the internal variable can be determined by: 

 22 2 2
1

cS

u n dS
V

    (15) 



 
Continuum Mechanics – Progress in Fundamentals and Engineering Applications 

 

128 

where u2 is the crack opening displacement, n2 is the unitary vector normal to the crack 
surface, V is the representative element volume and Sc is the crack surface. 

 
Fig. 2. A [0°/90°/0o] laminated plate with generalized cracks: definition of parameters and 
the representative volume (Machado et al, 2008). 

 
Fig. 3. Boundary conditions and finite element mesh to evaluate the crack opening in a 
representative volume [0°/90°/0o] – (as suggested by Lim & Tay, 1996) 

Considering that t1 and t2 are the thickness of the 0° and 90° plies, respectively, t is the total 
thickness of the laminate, l is the distance between two adjacent transverse cracks, ρ is the 
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non-dimensionalized crack density (the quantity of cracks per unit of length), δ is the non-
dimensionalized maximum crack opening displacement, u2 is the maximum crack opening 
displacement, ψ is a normalized function of the crack opening profile and  is the 
normalized distance between the cracks center, the following expressions can be defined: 

 1 2t t t   (16) 

 
2t
L

   (17) 

 2

2

u
t

   (18) 

 
2

( )u
u
   (19) 

The maximum crack opening displacement u2 can be determined by a simple finite element 
analysis, considering the boundary conditions specified in figure 3. An arbitrary 
displacement is imposed. The value of δ is determined by the equation (18), and the 
displacement u2 is determined by MEF. The non-dimensionalized maximum crack opening 
displacement δ can be obtained using ρ, as shown in the expression (20): 

    1 1
1 2 3

a bc e c e c       (20) 

The constants a1, b1, c1, c2 e c3 in the expression (20) depends on the type of the used material. 
The table 1 exposes the value of these constants for the laminate glass/epoxi (Gl/Ep). 
 

Material 
Formulation in terms of ρ 

c1 c2 c3 a1 b1 

Glass/Epóxi 1.03 -0.81 2.28E-2 0.94 1.00 

Table 1. Coefficients for the expression (20) (Lim & Tay, 1996) 

As the internal variable used in this problem depends on the maximum crack opening 
displacement according to equation (15), and the crack density is calculated by 1 /L  , it 
can be shown that the state variable associated to the Mode I becomes: 

 Mode I:         22 2
8
5

u   (21) 

3. Approximation by computational methods 

In this paper, the maximum crack opening displacement u2 is determined by the expressions 
(18) and (20). The crack density ρ depends on the distance between two adjacent transverse 
cracks l, and its values are successively modified by the verification of the composite 
material rigidity loss. 
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Considering a conventional structural approximation by conventional Finite Element 
Method, the problem can be expressed by a system of algebraic equations, representing a 
typical element: 

 
1 111 12 16

21 22 26 2 2

61 62 66 6 6

a d
x

a d
y

a d
z

F FK K K d
K K K d F F
K K K d F F

                       
                

 (22) 

where Kij are the element stiffness matrix, (dx, dy, dz) are the components of the element 
displacement vector and {Fa} and {Fd} are the applied force vector and the element damage 
force vector. 

The procedure used in this paper to obtain the expected results is a little different because it 
uses a different computational method known as Modified Local Green's Function Method 
(MLGFM), in witch the system defined in expression (22) is not directly applied in a 
conventional FEM. A detailed explanation of this procedure can be found in Barbieri et al 
(1998a,b) and Machado et al (2008). The MLGFM is an integral method that determines the 
unknowns on the boundary, similarly to the Boundary Element Method, but the fundamental 
solutions are generated automatically by projections of the Green’s Functions developed from 
de field, as in the Finite Element Method. The matrix and the vectors indicated in (22) will be 
used to produce values at the boundary, as explained in the next topic. 

3.1 The Modified Local Green’s Function Method - MLGFM 

The Modified Local Green's Function Method (MLGFM) is an integral technique that 
associates the Finite Element Method and the Boundary Element Method, solving the 
problem through an integral equations system. Unlike to the BEM and the Trefitz Methods, 
the MLGFM does not use a fundamental solution and/or a Green’s function. The term 
“Local” indicates that the calculation of the GF projections can be done locally, that is, for 
each element.  

Essentially, the MLGFM uses a transverse integration technique and reciprocity relations to 
determine, at a local level, the Green’s Function, transforming the partial differential 
operator in an ordinary partial operator (Barcelos & Silva, 1987). The MLGFM uses finite 
elements at the domain with the purpose to create discrete projections of the Green’s 
Function, corresponding to fundamental solutions, that are used later in the integral 
equations system associated to the boundary approximation. To analyze a continuum 
mechanics problem through the MLGFM, such as the plate indicated in figure 4, two meshes 
are necessary, one for the domain and other for the boundary. With domain elements, the 
method generates a set of domain equations, which are used to generate automatically the 
domain Green’s projections. Later, a set of boundary equations are also generated and the 
boundary Green’s projections can be determined with the domain projections developed 
before. At the end, the system is solved only for boundary equations, where the main 
variables are calculated. Domain values may be obtained once the boundary values are 
known after the solution of the boundary equation system. 
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(a) Finite Elements Mesh (b) Contour Elements Mesh  
Fig. 4. Symmetric boundary conditions and plate for a 2x2 mesh (4 finite elements and 8 
contour elements) by the MLGFM. 

The most important steps of the MLGFM are detailed in the work sof Barbieri et al (1998a) 
and Machado et al (2008). It is possible to show that through the MLGFM two sets of 
equations are formed, the first one in the domain (equation (23)) and the other one on the 
boundary (equation (24)): 

 u(Q) = 

 [GT(P,Q) a(P)]d + 


 [GT(p,Q) f(p)]d ;  P,Q  ; p  (23) 

 u(q) = 

 [GT(P,q) a(P)]d + 


 [GT(p,q) f(p)]d ;  P  ; p, q  (24) 

where Q, P are two points in the domain; q, p are other two points on the boundary; a(P) is 
the vector of independent terms for the original problem; f(p) is the vector associated to the 
fluxes on the boundary; G(i,j) are the Green’s functions which may be understood as the 
generalized displacement in the point i in the direction of an unitary vector ni, when a 
generalized force is applied over the point j, in the direction of a unitary vector nj.  

Equations (23) and (24) describe completely the problem. Since these equations involve 
domain and boundary integrals, two types of meshes are necessary, one in the domain and 
the other on the boundary, using FE and BE methods, respectively. The FE domain 
approximation is also used to develop the Green’s functions which are associated to the 
matrices G(P,Q), G(p,Q), G(P,q) and G(p,q).  
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The approximation shape functions are the same as in the conventional FE and BE methods. 
For the present work, quadratic shape functions were employed to construct nine nodes 
lagrangean finite elements and three nodes boundary elements. 

Developing discrete equations from the nodal values, two sets of linear equations are 
determined: 

 A u = B f + C a  (in the domain)  (25) 

 D u = E f + F a   (on the boundary) (26) 

where u and u are the domain and the boundary displacements, respectively, a and f are 
the independent and the fluxes variables vectors. The matrices A, B, C, D, E and F can be 
written as: 

 A = 

 (Q)T (Q)d  (27) 

 B = 

 (Q)T G(Q)d (28) 

 C = 

 (Q)T G(Q)d (29) 

 D = 

 (q)T (q)d (30) 

 E = 

 (q)T G(q)d (31) 

 F = 

 (q)T G(q)d (32) 

where (Q) and (q) are matrices with the shape functions in the domain and on the 
boundary, respectively, and G(Q), G(Q), G(q), G(q) are the Green’s function projections 
over the boundary  and the domain , evaluated on the points Q and q. The Green’s 
projections can be written as: 

 G(Q) = 

 GT(p,Q) (p) d (33) 

 G(Q) = 

 GT(P,Q) (P) d (34) 

 G(q) = 

 GT(p,q) (p) d (35) 

 G(q) = 

 GT(P,q) (P) d (36) 
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In order to determine the Green’s functions automatically, it must be considered the 
following functional F, which one depends on G or G : 

 F(G,G) = B(G,G) -  B1(G,) -  B2(G, ) + B3(G,G) (37) 

where 

G – corresponds to G or G depending on the case of interest; 
B – is a bilinear form, developed to G or G; 

 and  are constants whose values are: 
 = 1 and  = 0 to determine G 

 = 0 and  = 1 to determine G 
B1, B2, B3 – are bilinear forms which can be written as: 

 B1(G,[]) = 

 G(Q) (Q) d (38) 

 B2(G,[]) = 

 G(q) (q) d (39) 

 B3(G,G) = 1
2

 N#(q) G (q). G (q) d (40) 

As in the variational approach of the FEM, the minimization of functional F(G,G) in 
Equation (37) results in a linear equation system which can be solved to determine the 
Green’s projections  

     (Q) (Q)  Ω ΓK G G A D  (41) 

where [K] is the global stiffness matrix, evaluated in the same way of the conventional finite 
element stiffness matrix; A and D are the matrices of Equations (27) and (30), respectively. In 
this way, the Green’s projections are determined directly from Equation (41), and can be 
applied in Equations (28), (29), (31) and (32) to complete the matrices of equations (25) and 
(26), which are the main system of the MLGFM. 

4. Damage evolution  

With purpose to quantify the damage accumulation due to a monotonic load increment, 
some failure criterion will be used. Generically, failure criteria can be considered as: 

 ij
a

ij

F Z
X

 
  
 
 

 (42) 

where Fa is the failure criterion, ij  are the local stress, Xij are the principal material strength 
and Z is the failure value characteristic to each criterion. The rigidity degradation of a 
component occurs due to a progressive process during its serviceable life. It is important to 
note that the evolution of rigidity loss in a structure can be characterized by a single crack or 
by the occurrence of generalized cracks. Combinations of failure modes can act together 
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causing changes in the material properties and in its local stress distribution. In this way, the 
main difficulty in this kind of analysis is the adoption of a failure criterion, aF , that 
conveniently describes the damage evolution due to a failure mode. 

The theories introduced to prevent the failure of an orthotropic laminate are adaptations of 
failure criterion for isotropic materials, modified for biaxial stress cases, such as, Maximum 
Stress Criterion, Maximum Strain Criterion, Tsai-Hill Criterion and Tsai-Wu Criterion 
(Reddy, 1997; Vasiliev & Morozov, 2001; Mendonça, 2005). 

A new criterion is presented, based on the strain energy release rate, to evaluate the 
formation of a new micro crack (Anderssen et al., 1998; Ji et al., 1998; Kobayashi et al.,2000). 
The released energy is used because it is practically independent from the crack length 
(Anderssen et al., 1998). Some of these criterions are presented here. 

4.1 Maximum stress criterion  

According to the Maximum Stress Criterion, for orthotropic materials, while the stresses in 
the principal directions of the material are lower than strength of the material in this 
direction, there are no fails, which means: 

Tensile failure 
1 tX   - longitudinal direction 

2 tY   - transverse direction 

Compressive failure 
1 cX   - longitudinal direction 

2 cY   - transverse direction 

Shear failure 12 C   - plane shear 

where tX  is the longitudinal tensile strength, tY  is the transverse tensile strength, cX  is the 
longitudinal compressive strength, cY is the transverse compressive strength and C is the 
shear strength of the lamina. 

4.2 Maximum strain criterion  

This theory is analogous to the Maximum Stress Criterion, but the fail criterion is controlled 
by deformation limits in the principal directions of material. In this theory the material will 
fail when one of the following limits are reached: 

Tensile failure 
1 tX   - longitudinal direction 

2 tY   - transverse direction 

Compressive failure 
1 cX   - longitudinal direction 

2 cY   - transverse direction 

Shear failure 12 C   - plane shear 

where X, X, Y, Y are the maximum deformation deformation values in the principal 
directions 1 and 2, for tensile and compressive loading, C , is the maximum angular 
distortion in the plane 1-2. 
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4.3 Tsai-Hill Criterion  

An adaptation made by Tsai in the Hill Criterion for transverse orthotropic laminate at 
plane stress condition, resulted in the expression (43): 

 
2 2 2
1 2 1 2 12
2 2 2 2 1

X Y X C
    

     (43) 

4.4 Tsai-Wu Criterion  

A simple procedure was proposed by Tsai-Wu, changing the Tsai-Hill Criterion in equation 
(43). When the tensile and compression strength are similar, the expression (44) becomes the 
Tsai-Hill Criterion. 

 
2 2 2
1 2 1 2 12
2 2 2 1

XYX Y C
    

     (44) 

4.5 Strain Energy Release Rate Criterion  

The Strain Energy Release Rate Criterion to describe the damage evolution was applied by 
Lim and Tay (Lim & Tay, 1996). Consider a symmetric laminated composite of width b and 
length L, with the configuration [0°l/90°m]s, where l and m are integers. When the laminated 
is loaded uniaxially in tension, the stress-strain curve is linear until the failure criterion is 
reached for the first time, at point A (figure 5). A transverse crack is introduced in 90° layer. 

 
Fig. 5. Stiffness loss in composite laminates [0°l/90°m]s – Lim & Tay (1995). 

The result is a reduction in the effective stiffness of the laminate in the loading direction, 
and this is represented by the OB segment in figure 5. Upon further loading, this reduction 
is verified by the segment BC. This process is repeated until line OF is reached. Note that 
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this dotted line represents the stiffness of the laminate where the contribution of the 90° 
layers was neglected. 

When the area BCHG reaches a critical value. An additional transverse crack is formed and 
the effective stiffness reduces again, as indicated by the segment OC. Denoting the area 
BCHG in figure 5 as 0iU , where i indicates the lamina in analysis, the strain energy density 
is given by: 

  0
1
2i xi xi yi yi xyi xyiU             (45) 

Where xi , yi  e xyi  are the stress in x direction, y direction and xy plane shear of the 
lamina i, respectively, and xi , yi  e xyi  are the strain in x direction, y direction and xy 
plane of the lamina i, respectively. Therefore, the energy iU , necessary to form a new crack, 
can be defined as: 

 0
2

i i
t

U LU
t

  (46) 

Where t is the thickness of the laminated, t2 is the thickness of the 90° plies an L is the length 
of the laminated. 

In this way, a transverse crack is assumed to be formed when: 

 i IcU G  (47) 

Where IcG  is the mode I energy release rate for the formation of a transverse crack. The 
process of determining the transverse crack density is repeated for each successive micro 
crack, using the same value for IcG . As seen in figure 5, a series of points (A, B, C, D, …, E) 
can be generated until the limit OI is reached. From this limit, matrix cracking in the 90º 
layers no longer influences significantly the laminate stress-strain behavior. It must be 
observed that in practice, the intervals between the points are very small, turning the curve 
smooth, rather than the curve shown in figure 5. 

5. Applications 

5.1 Analysis of laminated plates by the MFLGM  

The first application refers to the analysis of a laminate plate, whose materials of its lamina 
are defined in table 2. The aim of this application is to determine the stiffness loss E/Eo due 
to the improvement of crack density  for the Gr/Ep [0o./90o]s laminated, using () 
formulation 
 

Material E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12 

Grafite / Epoxi (Gr/Ep) 142,00 9,85 4,48 3,37 0,3 

Glass / Epoxi (Gl/Ep) 41,70 13,00 3,40 3,40 0,3 

Table 2. Material Properties - Highsmith e Reifsnider (1982) 
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The loss of stiffness is observed in figure 6 for different meshes and compared with the 
results obtained by Lim & Tay (1996) and experimental results. As the crack density grows 
up, the stiffness diminishes. The results are better with finest meshes, but even with coarse 
meshes, the approximation is good. Figure 7 shows the loss E/Eo versus crack density ζ for 
the case Gl/Ep [0°/90°]s – using () formulation. The same considerations are made for this 
case. 
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Fig. 6. Stiffness loss E/Eo versus crack density  for the Gr/Ep [0o./90o]s laminated, using 
() formulation. 
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Fig. 7. Stiffness loss E/Eo versus crack density ζ for the case Gl/Ep [0°/90°]s – using () 
formulation  
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5.2 Progressive stiffness loss of laminate  

To evaluate the stiffness loss of laminated plates due to micro-crack accumulation under 
increasing monotonic loading using the MLGFM, the following conditions were considered: 

a. Stress-strain relations of a thin orthotropic laminate are considered in plain stress state;  
b. Dimensions of the squared plate are 2,0 m x 2,0 m, but only a ¼ was modeled due to its 

double symmetry: 2{( , ) : (0 1,0;0 1,0}x y R x y     ; 
c. Axial tension loading in “x” direction; 
d. The properties of the material used are listed in the tables 2 and 3; 
e. The value of IcG  adopted is 250 J/m2 for the glass/epoxi laminate (Tay & Lim, 1993). 
 

Material E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12 

Glass / Epoxy (Gl/Ep) 41.70 13.00 3.40 3.40 0.3 

Table 3. Mechanical properties (Highsmith & Reifsnider, 1982) 

 

Xt (MPa) Yt (MPa) Xc (MPa) Yc (MPa) C (MPa) 

1170.00 32.00 53.00 18.00 45.00 

Table 4. Strength limits for glass/epoxy laminate (Highsmith & Reifsnider, 1982) 

In order to compare the failure criterion, a [0o/90o3]s glass/epoxy symmetric laminated with 
total thickness of 1,624mm was used. All layers on the laminated have the same thickness. 
The results are presented in figure 8. All criterions were implemented in the same program 
to facilitate the comparison. 
 

 
Fig. 8. Gl/Ep [0º/90º3]s Laminated – Failure Criterion comparison. 
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To demonstrate the model capability to prevent the laminate stiffness loss, a comparison 
between the results obtained by the strain energy criterion implemented in this paper and 
the results obtained by Talreja (Talreja,1984) and Tay (Tay & Lim, 1993) was made. This 
analysis also used the [0o/90o3]s glass/epoxy symmetric laminated with total thickness of 
1,624mm. The results are presented in figure 9. 

 
Fig. 9. Gl/Ep [0º/90º3]s Laminated – Results comparison. 

6. Conclusion 

The present paper deals with damage composite laminate with transverse cracks in the 
matrix applying Continuous Damage Mechanics Theory, which was initially proposed by 
Kachanov (Kachanov, 1958) and than adapted by Allen (Allen et al., 1987a,b) for orthotropic 
laminated composites. This theory was also applied by Lim and Tay (Lim & Tay,1996) in 
laminates with transverse cracks to describe the stiffness loss of the structure. The adapted 
Damage Theory considers the mechanism associated to the transverse cracks through the 
internal state variables inside the constitutive relations based on the Continuous Damage 
Mechanics. 

The theoretical model was implemented in a computational program, developed in 
FORTRAN language, based on the Modified Local Green's Function Method (MLGFM). The 
approximated solution was obtained by the MLGFM. The damage evolution model, 
originally developed for FEM, can be applied also to MLGFM without substantial changes 
in the original code. 

In the presented results, it can be observed that the conventional criterions catch only the 
moment when the 90º layers no longer influences the stiffness of the laminated. Most of the 
criterions were able to determine the loss of stiffness. The strain energy criterion is able to 
evaluate the damage evolution, identifying the moment when the transverse cracks starts to 
affect the laminated rigidity. However, during the strain increase, the efficacy of the method 
to evaluate the stiffness loss decreases. Even so, as shown in the figure 8, the implemented 
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code is able to denote, for all criterions, the stiffness loss in laminated composites when 
transverse cracks are formed in the matrix. 

It is important to note that the actual stage of damage of a laminated plate depends on the 
historical of loading. As the micro cracks rise by quantity, length and opening, the external 
load must be applied step by step. A tolerance and a stopping strategy must be decisive for 
the accuracy and approximation of the true solution. 
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1. Introduction 

This chapter presents the energy dissipation approach for analyzing surface contact 
damages in various materials, including composite materials. As known, surface contact is a 
very common phenomenon, which can be found in daily life and many scientific and 
engineering problems. The contact of different bodies can be modeled as indentation. 
Analysis of indentation and modeling of the deformation states of indented materials are 
often difficult because of the complexity of stress distributions within indentation zones. It is 
also very difficult to evaluate stress states in regions underneath an indented zone. 
Instrumental indentation has been performed on various materials including composite 
materials. Experimental studies on indention of coatings and brittle materials have been 
reported extensively, but the criterion for evaluating the extent of damage is not unified. 
Ductile materials deform relatively stable in indentation processes. While brittle materials 
are sensitive to compressive contact loadings in view of the formation of surface cracks. 
Therefore, it is difficult to find a unified stress or strain based damage criterion to 
characterize the damage evolution. Energy dissipation analysis may be more accurate to 
describe the deformation behavior of such materials. Specifically, under wedge indentation, 
the analysis should be investigated because the stress field has the singularity which limits 
the applicability of the strength criterion. In this chapter, the load-displacement relations 
with elastic-plastic responses of the materials associated with the indentation processes will 
be obtained to calculate the hysteresis energy. Lattice rotation measurement using electron 
backscatter diffraction (EBSD) technique will be performed in the region ahead of the 
indenter tip to measure the dimension of the contact damage zone (CDZ) and the results 
will be used to define the length scales in contact deformation. A unified criterion using the 
hysteresis energy normalized by the length scales will be established. 

Damage evolution in composite materials is very sensitive to the interaction of 
reinforcements and matrices in interface regions. For example, the development of damage 
in glass particle and fiber reinforced epoxy composite materials is strongly influenced by the 
interface debonding conditions [1]. However, the exact effect of bonding conditions on the 
performance of particle filled composite materials is still not fully understood. Kawaguchi 
and Pearson [2] reported that strong matrix-particle adhesion may lower the fatigue crack 
propagation resistance. While the studies on Si3N4 nanoparticle filled epoxy composites 
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under sliding wear conditions showed that the strong interfacial adhesion between Si3N4 
nanoparticles and the matrix reduced the wear rate of the composites [3]. Damage in the 
form of debonding in coated fiber reinforced composites under tension-tension cyclic load 
was investigated [4]. The bi-interfacial debonding (fiber/coating and coating/matrix) 
behavior was analyzed using a double shear-lag model. Based on this model, the debond 
growth rate and strain energy were calculated by finite element method. Non-uniform 
damage of coating materials was accounted in the analysis. There exists two-interface 
coupling in debonding. It was found that the strength and thickness of coating materials are 
the major factors controlling the bi-interfacial crack growth. Numerical simulation of 
progressive damage evolution in fiber reinforced composites was performed to understand 
interface stress statistics and the fiber debonding paths development [5]. A meso cell 
including several hundred inclusions was used to account for the micro structure statistics 
of the composites. Both the local stress and effective elastic moduli of disordered fibrous 
composites were computed. 

Micromechanics based approaches have been used for debonding damage analysis [6-10]. 
Cavallini, Bartolomeo, and Iacoviello [6] investigated the damage in three different ferritic-
pearlitic ductile cast irons with the main focus on graphite nodules debonding. Chan, Lee 
and Nicolella et al. [7] studied the near-tip fracture processes of nanocomposites under 
cyclic loads. It is found that particle bridging, debonding at the poles of particle/matrix 
interface, and crack deflection around the particles are the major micromechanics responses 
to cyclic loadings. Environmental conditions on the subcritical debond-growth rates were 
also examined [8]. Temperature and relative humidity are sensitive factors. Long term 
exposure to a moist environment resulted in the time-dependent decrease in adhesion 
between matrices and reinforcements. Three different interfacial damage models including 
the shear lag model, the linear degradation model and the modified power degradation 
model were used to describe the bond decay at steel/concrete interface [9]. The role of 
internal friction in resisting interfacial debonding was addressed. Micro-level damage in 
discontinuous fiber reinforced composites were found in the forms of fiber/matrix 
interfacial debonding and fiber failure [10]. The Weibull damage law was used to predict the 
microscopic damage behavior of composites with different fiber contents and orientations. 

Crack initiation or small crack growth plays a critical role in interface debonding [11]. In 
small crack growth, plasticity-induced crack closure was observed, but the effect of crack 
closure in fatigue crack growth predictions was less than the estimation by the classical 
approaches [12]. In addition to crack closure, the shear deformation of matrix ahead of a 
small crack slows down the interfacial debonding rate [13]. Interface debonding controlled 
small crack growth behavior depends on the stress levels [14], and loading rate [15-16]. 
Microdebonding or subcritical debonding behavior is also dependent on surface chemistry 
[17] and temperature [18, 19]. To evaluate the surface chemistry effect, subcritical debonding 
of thin polymer layers from inorganic dielectrics was studied using selected amino- and 
vinyl- functional silane adhesion promoters [17]. Due to the surface modification, the failure 
occurs not at the interface but in a region very close to the interface. The effect of 
temperature on debonding is especially significant in metal matrix composite materials [20-
34]. At elevated temperatures, thermomechanical fatigue accounts for the failure of these 
materials. Alternating plastic shearing of the interface takes place under combined 
mechanical and thermal stresses [18]. At low temperatures, metal matrices such as Al 
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typically shows an initial hardening process, while at high temperatures, only cyclic 
softening is found [19]. 

Fatigue tests on reinforced titanium composites revealed various interface damage 
mechanisms [20-27]. Shear frictional sliding [20], interfacial debonding [21], fiber bridging 
[22], surface embrittlement [23], matrix ligament premature ductile shear [24], and crack 
deflection [25] are typical damage mechanisms observed. These damage mechanisms could 
occur simultaneously depending on loading modes, but debonding always exists and is 
considered as the major mechanism. A stress-based criterion for predicting the debonding 
behavior was proposed [22]. Rios, Rodopoulos and Yates [26] assessed the initial and final 
damage states caused by interface debonding and fiber bridging to determine the damage 
accumulation rates in SiC fiber reinforced titanium composite. Their method was used for 
damage tolerant fatigue design. Residual stiffness and the post-fatigued tensile strength as a 
function of microstructural damage were obtained through computer simulation, and the 
interfacial frictional stress and the critical crack length were also calculated [27]. Under 
combined thermal and mechanical fatigue loading, carbon fiber/Al and SiC fiber/Al 
composites were found to fail by a ratchetting mechanism, which is characterized by the 
progressive plastic deformation increasing with the number of cycles, even at stress levels far 
below the yield stress [28]. It is further found that the main phenomenon leading to composite 
failure is ratchetting at high load levels and interface degradation at low load levels. 

Short crack growth behavior in steels containing different particle inclusions including 
Al2O3, MnS and Ti3N4 was studied by finite element method [29]. Crack-tip displacements 
and energy release rates were taken as the driving forces. It was found that the energy 
release rate is the highest for the Al2O3 inclusion case with a short through thickness crack. 
Li and Ellyin [30] studied the fatigue damage and the localization in Al2O3 particulate 
reinforced aluminum composites. The primarily damage forms are particle debonding, 
fractured particles and matrix cracks. Mesoscale reinforcement defects, such as a clump of 
large particles were also found causing damage localization. These defects were assumed to 
be the reason for short crack initiation and extension. In Murtaza and Akid's work on steel 
[31], it is reported that debonding at the matrix/inclusion interface is the major mechanism 
for the formation of short cracks. Stress redistribution at interfaces in alumina/aluminum 
multilayered composites was investigated [32]. The effects of interfacial debonding or of 
plastic slip in the metal phase adjacent to strongly bonded interfaces were considered. The 
results of stress measured around the crack reveal that debonding is much more effective than 
slip in reducing the stress ahead of the crack. Interaction of short fatigue crack with different 
types of particles was studied. Stronger interaction of fatigue crack with Si particles, as 
compared to SiC particles, was observed in particle reinforced A356 casting alloy [33]. 

Modeling fatigue debonding have been performed by many researchers [34-39]. In Gradin 
and BÄacklund's work [34], a unit cell model containing a steel bar and a co-centric epoxy 
cylinder was used to study the progressive de-bonding between the fiber and the matrix. 
Energy release rate was correlated to the interfacial debonding length. While in the work 
shown in [35-37], void formation and growth due to fatigue loading was characterized by 
the tensile stress at the interface. Three distinguishable debonding stages, two transient ones 
separated by a steady stage, were defined by Botsis and Zhao [38]. Stress intensity factor 
may be used to distinguish the steady and the transient stages because the total stress 
intensity factor was found to be approximately constant at the steady state. Debonding 
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under different loading modes including mode I, mode II and mixed mode (I & II) was 
studied by Dessureautt and Spelt [39]. It was observed that the debonding rate was the 
greatest under mixed-mode conditions. 

In this chapter, the emphasis on mechanics analysis will be put on the damage initiation and 
propagation from the debonding of particle/matrix interface. Both macro- and micro-scale 
analysis will be performed. The macroscale approach based on continuum mechanics will be 
used to obtain the stress field in the elastic-plastic region within the matrix in front of the 
debonded particle. Treating the debonded region as a crack, stress intensity solutions can be 
obtained. In the plastic zone just ahead of the debonded particle, the microscale approach 
will be used to find the stress solutions. In the classical plasticity theory, the material 
property at the crack tip is considered to be isotropic and the maximum stress in the plastic 
zone is assumed to be the yield strength of the material. In this work, the particle-matrix 
interaction is modeled as surface contact and multiscale approaches are used in the 
modeling and experiments. 

Why the particle-matrix interaction and the debonding in the interface region can be 
modeled as contact damage under indentation load? The rationale is evident by examining 
the damage zone. As shown in Figure 1, the particle inclusion is debonded from pearlitic 
steel matrix. Along the main crack propagation direction (marked as x-direction), two 
distinct slip regions are found. These regions are denoted as Region I and Region II. In each of 
these regions, persistent slip lines are found. Although there are also some other slip zones 
around the particle, the predominant slip activities that determine the main crack speed are 
from Region I and Region II. Therefore, with a simplified model, the slip in these two regions 
can be seen as generated by indentation. The hard particle is equivalent to an indenter. 

 
Fig. 1. Scanning electron microscopic image showing contact damage induced slip zones 
around a debonded particle. The main crack propagation is along x-axis. 

2. Surface contact damage model 

The first part of the modeling work is on the surface contact damage initiation using a 
microscale approach. Since the deformation state at the contact point is highly anisotropic, 
the deformation mechanism of single crystal plasticity is enforced in this stage. The 
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deformation of the material in the indenter tip region due to the motion of dislocation on 
different slip systems will be described. Based on such a consideration, we assume that the 
stresses at the boundary between the elastoplastic region and the plastic zone propagate into 
the plastic zone. The magnitudes of the stress components are determined. The primary slip 
lines are assumed to be collinear with the dislocation motion directions. The second part of 
this section is specifically on the contact damage propagation. Once a short crack from the 
interface debonding starts growing, how to characterize the fatigue crack growth resistance 
becomes an important issue. A simulated crack (indenter penetration depth) is used to study 
the contact damage propagation kinetics. The specific energy of damage, a parameter which 
is used to characterize the resistance of the material to contact damage, is defined. The 
relationship between energy release rate and the specific energy of damage is established. 

2.1 Contact damage initiation stage: microscale approach 

It is assumed that the matrix is elastic-plastic so that in-plane slip is the prevailing plastic 
deformation mechanism. S is the unit vector parallel to the slip direction. N is the unit vector 
along the slip plan normal. To use indentation to simulate the debonding, the partial 
debonding and the fully debonded states, as shown in Figures 2(a) and 2(b), respectively, 
can be treated by the cases with indenter partially penetration and retreating. In order to 
find the stress solution, the debonded region is considered as a crack. A stress intensity 
approach is applied to find an approximate solution. Figures 2(c) shows both the global and 
the local coordinates for deriving the stress solutions in the slip regions. 

 
Fig. 2. Sketches for particle/matrix interface debonding analysis: (a) partial debonding, (b) 
complete debonding, (c) configuration of global, local coordinates related to the slip 
direction and slip plane normal vectors. 

In a contact cycle, supposing that plane-strain conditions hold, the non-zero components of 
the stress field ahead of the particle are calculated by fracture mechanics as 
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where KI is the stress intensity factor related to the particle shape.  

Other stress components are zeros, i.e. τxy = τyx = τyz = τzy = 0. Assuming the material near the 
tip is fully plastic, the following yielding criterion holds 

 iN S     (2) 

where τi is the shear strength of the ith slip system, τi = τI for Region I and τi = τII for Region II. 
N is the surface normal of the slip plane, S is a unit vector along the slip direction. If the 
dislocation motion is along positive S, the right hand side takes positive τi, while in the case 
that the slip occurs along negative S, the negative sign is kept on the right hand side. Σ is the 
stress tensor. The components of N are Nx, Ny and Nz, and S has the components: Sx, Sy and 
Sz. Since only the in-plane slip is considered in this work, the z-components for both N and S 
are zeros. Therefore, the yield condition is 

 x xx x y yy y iN S N S      (3) 

where Sx = cos(φi), Sy = sin(φi), Nx = -sin(φi), Ny = cos(φi), φi = φI for Region I and φi = φII for 
Region II. Substituting these relations into Eq. (3) yields 
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Eq. (4) provides the yield function related to the slip angle and the stress field when the 
material is in a fully-plastic state. For the partial debonding case, along the radial line θ = 0, 
the in-plane stresses are 
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where r* is the distance from the origin to an arbitrary point on the θ = 0 radial line, and 
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Once the stress field along the radial line θ = 0 is obtained, it is straightforward to find the 
stress state within the slip region. One of the ways is to follow the slip line analysis [40] to 
solve the stress components in Region I and Region II. 

2.2 Contact damage propagation stage: macroscale approach 

In this part, evaluation of the contact damage propagation behavior based on 
experimentally determined irreversible work and energy dissipation is presented. The 
energy dissipated into damage formation is considered as the indentation penetration 
driving force. A materials parameter, the specific energy of damage is used as the contact 
damage tolerance criterion as previously introduced for some materials in [41-46]. 
Correlation between the contact damage tolerance and the microstructure of the material is 
made. 

Considering indenter penetration region and its surrounding damage zone in the material 
as a thermodynamic entity, the following relationship can be obtained based on entropy and 
energy balance considerations. 

  * da
TS J a D

dN
    (6) 

where T is the ambient temperature and S  is the rate of change of the entropy of the system 
comprising the indenter penetration region and the surrounding damage zone. J* is the 
energy release rate. γ is the specific damage of energy. a is the nominal indenter penetration 
depth or developed contact length between the indenter and the indented material. da/dN 
is the indenter penetration speed. N is the number of indentation cycles. D is the rate of 
energy dissipation into contact damage formation associated with the damage zone 
evolution. 

At minimum entropy, 0TS  . Eq. (6) can be rearranged as 

 *
da D
dN a J




 (7) 

Under force control indentation conditions, the energy release rate J* can be evaluated by 

 
1da P

dN B a





 (8) 

where P is the potential energy (area above the unloading curve) at the indenter penetration 
depth a, and B is the specimen thickness. The cyclic rate of energy dissipation, D associated 
with contact damage zone evolution can be evaluated by the difference between the 
hysteresis energy related to indentation and the hysteresis energy dissipated into the bulk of 
the material. It can be expressed as: 

 nH
D

B
  (9) 

where Hn is the hysteresis energy. Rearranging Eq. (7) yields 
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*J D

daa a
dN

 
 
 
 

 (10) 

The quantities J*, da/dN, and a, can be obtained from indentation experiments. The 
relationship expressed in Eq. (10) can be plotted in a two dimensional domain, directly 
giving the value of the specific energy of damage, γ, which is the intercept of the straight 
line. γ can be used as a material property related parameter. By examining Eq. (10), as the 
contact damage propagates, the energy release rate increases, thus the change of the left 
term J*/a can be leveled by both the increasing of J* and the indentation penetration depth, a. 
The variation of the term in the right side of Eq. (10), D/[a(da/dN)], depends on several 
factors. These are the indentation depth, a, the indentation speed, da/dN and D, the cyclic 
rate of energy associated with the damage formation. The indentation speed changes with 
the indentation depth. From energy balance analysis, it is clear that the value of D changes 
with the indentation depth, a. Thus, the variation of D is well balanced by the change in both 
a and da/dN. Thus, on the J*/a vs D/[a(da/dN)] plot, a straight line which is almost parallel to 
the D/[a(da/dN)] axis can be obtained. 

3. Experimental 

The materials used include two types. One type is copper for indentation penetration zone 
measurement. The other one is a medium carbon steel with inclusions for simulated surface 
damage propagation analysis. A hardened tool carbon steel by heat treatment was used to 
make the wedge indenter. The indentation configuration is shown in Figure 3. The indenter 
has a 90o apex angle. The indentation process was conducted under cyclic loading 
conditions. During indentation, the load and the displacement was recorded by an Xplorer 
GLX data acquisition unit. These data can be used to plot and show the relation of the 
indentation load v.s. the nominal indenter penetration depth. 

 
Fig. 3. Indentation set-up for performing simulated surface contact damage tests. 
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There exists difficulty in measuring the actual damage zone size by direct visual 
observation. We examined indented copper crystal using scanning electron microscopy 
(SEM) and measured the damage zone size. The copper polycrystal was etched in warm 
HCl/SnCl4 solution. Further investigation of the damage zone using electron backscattering 
diffraction (EBSD) technique to reveal the contact damage zone in single crystal copper was 
also performed. 

4. Results and discussion 

The indentation cyclic load vs time is shown in Figure 4(a). Time-dependent indentation 
penetration depth was recorded and shown in Figure 4(b). The relation of the indentation 
load v.s. the indenter penetration depth at a typical cycle is shown in Figure 4(c). From the 
load-displacement curves, we can calculate the potential energy and the hysteresis energy 
associated with the contact damage processes as schematically shown in Figure 4(d). The 
indentation penetration depth, a, versus the number of indentation cycles, N, for three steels 
was plotted. The slope of the a versus N curves was used to calculate da/dN, and establish 
the relationship of indentation speed, da/dN, and indentation depth, a. 

 
 

 

 
Fig. 4. Calculating energy dissipation terms from indentation test data: (a) cyclic loading 
profile, (b) time-dependent displacement, (c) load-displacement relationship, (d) illustration 
showing how to determine the potential energy and hysteresis energy. 
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The potential energy, P, was calculated from the loading and unloading curves recorded at 
intervals of number of cycles as the area above the unloading curve (see Figure 4(d)). On 
this basis, the relationship between the potential energy and the indentation depth, a, can be 
established. The relationship between P and a is used to determine the energy release rate, J*, 
using Eq. (8). The hysteresis energy at each indentation cycle Hn is determined from the area 
of the hysteresis loop recorded as schematically shown in Figure 4(d). Based on the value of 
hysteresis energy and the relationship between a versus N, the quantity of D, the cyclic rate 
of energy dissipation into contact damage zone evolution is determined using Eq. (9). 

Figure 5 shows the fatigue crack growth behavior of three medium carbon steels (named as 
materials A, B and C) due to the interface debonding of particle inclusions and the pearlite 
matrix. The carbon content of the three steels is 0.77% in weight. However, the heat 
treatment conditions are not the same, which affected their fatigue property. Steel A was 
heat treated at the highest cooling rate. B has a much lower cooling rate than A, while C has 
an even lower cooling rate, but close to that of B. Tension-tension fatigue tests with cyclic 
loading ratio of R = 0:1 were performed. It is found that the energy release rate and the 
cyclic energy dissipation rate change constantly for each of the materials during the fatigue 
crack growth. We also found that the critical value of energy release rate is very difficult to 
determine as shown in Figure 5(a), the energy release rate, J*, versus the crack length for the 
three steels. The increase of the crack length, a, causes the increase of the values of J* for the 
three steels. Therefore, the energy release rate can not be considered as a materials 
parameter for comparing the fatigue damage tolerance of different materials because a 
unified value for each material can not be found. 

 
Fig. 5. The fatigue crack propagation data of three medium carbon steels: (a) the energy 
release rate, J*, versus the crack length, a, (b) the cyclic rate of energy dissipation, D, versus 
the crack length, a, (c) crack speed versus the energy release rate. 

The irreversible energy dissipation during fatigue damage of the three steels was also 
calculated. Based on the measured hysteresis energy for both notched and unnotched 
specimens and the relationship between crack length a versus fatigue cycle N, the quantity 
of D, the cyclic rate of energy dissipation into damage zone evolution was determined. The 
relationships of D and the crack length, a, for the steels, are shown in Figure 5(b). Material A 
displayed much higher value of the cyclic rate of energy dissipation into the active zone 
evolution. The other two steels, B and C demonstrated very similar behavior. For all of the 
three steels, it is evident that with the increase in crack length, the values of D increase. 
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The fatigue crack propagation speed versus the energy release rate for the three steels is 
shown in Figure 5(c). Steel A displayed the highest crack growth speed in the entire energy 
release rate range. In most part of the energy release rate range, for say, J* less than 12 kJ/m2, 
steel B and C have the crack speed very close to each other. In the energy release rate range 
of higher than 12 kJ/m2, B has higher crack speed than C. It can also be seen from Figure 5(c) 
that the three curves display the similar two-stage crack growth behavior which are 
corresponding to the stable crack growth stage and the unstable crack growth stage of the 
specimens from the three steels. A threshold stage was observed only in the pre-crack 
initiation stage for A and B. But it extended to the beginning of the stable crack propagation 
stage for the specimens from C. In the stable crack propagation stage, the decreased 
acceleration in crack speed is an indicative of material damage within the area in front of the 
crack tip associated with fatigue crack propagation. 

The damage tolerance is evaluated by the specific energy of damage γ. The parameters γ 
was calculated using the experimental data generated from fatigue tests including a, da/dN, 
J*, and D. A plot of J*/a versus D/[a(da/dN)] can be generated for each material. Based on the 
results of the three steels, A, B and C, we generated Figure 6. Three straight lines which are 
almost parallel to the horizontal axis were obtained for the three steels. The intercepts of the 
three lines give the values of γ for each layer. From the results shown in Figure 6, the value 
of γ, being a material property related parameter, is suitable for characterizing the fatigue 
damage tolerance. 

 
Fig. 6. Plot for determining the specific energy of damage, γ, of the three medium carbon 
steels under different heat treatment conditions: (a) steel A, (b) steel B, (c) steel C. 

Due to the microstructure change with heat treatment conditions, the specific energy of 
damage for each of the steels is different. Steel A with hardening treatment, has the lowest γ, 
while C shows the highest γ due to tempering treatment. The specific energy of damage of 
steel B, heat treated at very low air cooling rate, is close to that of C. Since γ is almost a 
constant for each material tested, it can be taken as a parameter characteristic of the fatigue 
damage tolerance for evaluating the resistance to fatigue crack growth. 

Although the indentation penetration depth is fairly straightforward to be recorded, it is 
challenge to measure the actual damage zone size. Figure 7(a) is the scanning electron 
microscopic (SEM) image of the copper polycrystal after etching in warm HCl/SnCl4 
solution. It can be seen that the grain boundaries are etched away by the solution. The 
precision polishing helped to expose the etching pits and islands on the surface of the 
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specimen. These features come from the selectively dissolving of materials located near the 
ends of the dislocation lines. However, the indented damage zone is still unclear. 

Further investigation of the damage zone using electron backscattering diffraction (EBSD) 
technique reveals different features within the contact damage zone. For example, the band 
contract map, Figure 7(b), provides the features of subgrain formation and recrystallization 
of the single crystal grain under wedge indentation after annealing. Since the intensity of the 
backscatter electrons changes from grain to grain, the grain boundary can be revealed by the 
band contrast change. Thus, it is possible to identify the microstructure in the area close to 
the indentation tip. By this method, the subgrain formation due to severe contact damage 
and plastic deformation can be revealed. The average size of the subgrains shown in Figure 
7(b) is about 10 to 15 µm. It is also found there is an elliptical region in front of the 
indentation tip, which corresponds to the strain hardened elastic-plastic zone. Deeper into 
the indentation region, it is the fully plastic deformation zone, as shown by the in-plane 
lattice rotation map in Figure 7(c). Such EBSD results will provide us the insight into how to 
determine the size of the damage zone. For example the conservative measurement will give 
us the size of the damage zone the same as the indenter penetration zone (IPZ) as shown by 
the elliptical region in Figure 7(b). A more accurate measurement should account for the 
extended plastic region as shown in Figure 7(c). The distance from point A to point C or E 
instead of just from point O to A should be considered as the damage zone size, which is 
about 5 times larger than the indenter penetration zone (IPZ). This EBSD measurement 
results were used to correct the damage tolerance calculation by adding the contact damage 
zone size to the indenter penetration depth or crack length, a. Consequently, the indenter 
penetration speed da/dN was modified as the damage zone expansion speed. 

 
Fig. 7. Measuring the size of indentation contact damage zone via electron microscopy: (a) 
scanning electron microscopic measurement, (b) band contrast map of the indentation 
penetration zone obtained by electron backscatter diffraction (EBSD) measurement, (c) in 
plane lattice rotation map generated by electron backscatter diffraction (EBSD) 
measurement. 

5. Conclusions 

The energy dissipation approach is applicable for analyzing surface contact damages in 
various materials, including composite materials. The contact of different bodies can be 
modeled as indentation. Analysis of indentation and modeling of the deformation states of 
indented materials at different scales are performed. The stress distributions within 
indentation zones are described by fracture mechanics, and single crystal plasticity solutions 
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to the stress states in regions underneath the indented zone are obtained. Instrumental 
indentation performed on copper materials with different grain sizes reveals both the 
indentation zone and damage zone. The reason for choosing copper is the high ductility of 
copper which allows deformation develops in a stable way during the indentation 
processes. 

Based on the experimental studies of fatigue crack growth on three steels, the criterion for 
evaluating the extent of damage is identified. Although it is difficult to find a unified stress 
or strain based damage criterion to characterize the damage evolution, energy dissipation 
analysis provides a more accurate way to describe the deformation behavior of the 
materials. Under wedge indentation, the analysis shows advantage because the stress field 
has the singularity which limits the applicability of the strength criterion. The load-
displacement relations with elastic-plastic responses of the materials associated with the 
indentation processes were obtained. The hysteresis energy was also determined. Lattice 
rotation measurement using electron backscatter diffraction (EBSD) technique in the region 
ahead of the indenter tip is an effective way to measure the dimension of the contact 
damage zone (CDZ) and the results can be used to define the length scales during contact 
deformation. A unified criterion using the hysteresis energy normalized by the length scales 
has been established. The above mentioned indentation tests in this work caused 
deformation of significant amount of materials. For further studies, comparison of deep 
indentation and nanoindentation should be performed. 
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